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2-LOCAL ISOMETRIES OF NON-COMMUTATIVE LORENTZ SPACES
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Dedicated to E. I. Gordon on the occasion of his 70th birthday

Abstract. Let M be a von Neumann algebra equipped with a faithful normal finite trace 7, and let
S (M, T) be an x-algebra of all 7-measurable operators affiliated with M. For z € S (M, 7) the generalized
singular value function p(z) : t — p(t;z), ¢ > 0, is defined by the equality p(t;z) = inf{||zpl|m :
p? =p* =p € M, 7(1 —p) < t}. Let ¢ be an increasing concave continuous function on [0, c0) with
¥(0) = 0, ¥(o0) = oo, and let Ay(M,7) = {z €S (M,7): |z|p = [J7 u(t;z)dip(t) < oo} be the non-
commutative Lorentz space. A surjective (not necessarily linear) mapping V : Ay (M, 7) = Ay(M,7) is
called a surjective 2-local isometry, if for any z,y € Ay (M, 7) there exists a surjective linear isometry
Vet Ay(M,T) = Ay (M, 7) such that V(z) =V, y(x) and V(y) = Va4 (y). It is proved that in the case
when M is a factor, every surjective 2-local isometry V : Ay (M, 7) — Ay (M, 7) is a linear isometry.

Key words: measurable operator, Lorentz space, isometry.
Mathematical Subject Classification (2010): 46152, 46B04.

For citation: Alimov, A. A. and Chilin, V. I. 2-Local Isometries of Non-Commutative Lorentz Spaces,
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1. Introduction

Let " be a complex separable infinite-dimensional Hilbert space, let (Cg,| - |lcg)

be a Banach ideal of compact linear operators in H generated by symmetric sequence space
(E,| - ||g) C co, and let V' be a surjective 2-local isometry on Cg, that is, V : Cg — Cg
is a surjective (not necessarily linear) mapping such that for any z,y € Cg there exists
a surjective linear isometry V. on Cg for which V(z) = V, 4(x) and V(y) = V;4(y). In the
papers |1, 2| it is shown that in the case when Cg is separable or has the Fatou property,
Crg # C,, every surjective 2-local isometry on Cg is a linear isometry. In the proof of this
statement is essentially used explicit description of all surjective linear isometries on Cg [1, 3|.

Banach ideals (Cg, || - ||c,) of compact linear operators are examples of non-commutative

symmetric spaces £(M, 7) of measurable operators affiliated with a von Neumann algebra M

(© 2019 Alimov, A. A. and Chilin, V. L.
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equipped with a faithful normal semifinite trace 7 (see, for example, |4, Ch.2, § 2.5]).
It is natural to expect that for these non-commutative symmetric spaces with the Fatou
property, every surjective 2-local isometry V : E(M,7) — E(M,7) is a linear map.
Unfortunately, the method of proof of a similar statement for Banach ideals (Cg, || - |lc,) can
not be applied here, since there is no description of surjective linear isometries V' : (M, 1) —
E(M,T). At the same time, in the case of non-commutative Lorentz and Marcinkiewicz
spaces, such a description of surjective linear isometries was obtained in the paper [5]. Using
this description, we obtain the following description of surjective 2-local isometries of non-
commutative Lorentz spaces.

Theorem 1. Let M be an arbitrary factor with a faithful normal finite trace T, and let
(Ay(M,T),||-]ly) be a non-commutative Lorentz space. Then every surjective 2-local isometry
Vi Ay(M, 1) = Ay(M,T) is a linear isometry.

2. Preliminaries

Let H be an infinite-dimensional complex Hilbert space, let B(#) be the C*-algebra
of all bounded linear operators in H, and let 1 be the unit in B(#). Let M C B(H)
be a von Neumann algebra on Hilbert space H equipped with a faithful normal semifinite
trace 7 (see, for example, [6]). A linear operator x : © (x) — H, where the domain © (x) of x
is a linear subspace of H, is said to be affiliated with M if yz C zy for all y € M’, where M’
is the commutant of M. A linear operator z : © (x) — H is termed measurable with respect
to M if z is closed, densely defined, affiliated with M and there exists a sequence {p,} -,
in the lattice P (M) of all projections of M, such that p, T 1, p,(H) C D (z) and 1 — p,
is a finite projection (with respect to M) for all n. The collection S (M) of all measurable
operators with respect to M is a unital x-algebra with respect to strong sums and products.

Let x be a self-adjoint operator affiliated with M and let {€*} be a spectral measure of x.
It is well known that if = is a closed operator affiliated with M with the polar decomposition
x = ulz|, then v € M and e € M for all projections e € {el*l}. Moreover, 2 € S(M) if and
only if x is closed, densely defined, affiliated with M and em()\, 00) is a finite projection for
some A > 0.

An operator z € S (M) is called T-measurable if there exists a sequence {p, } - ; in P (M)
such that p, T 1, pp, (H) C D (z) and 7(1 — p,,) < oo for all n. The collection S (M, ) of
all T-measurable operators is a unital #-subalgebra of S (M). It is well known that a linear
operator z belongs to S (M, 7) if and only if x € S(M) and there exists A = A(z) > 0 such
that 7(el®l(X, 00)) < 0.

The generalized singular value function wp(z) : ¢t — wp(t;z), t > 0, of the operator x €
S (M, ) is defined by setting |7|

p(t;x) = inf{||xp\| cpeP M), 7(1 —p) < t} = inf {5 >0: 7(ell(s,00)) < t}.

A non-zero linear subspace £(M, 1) C S (M, 1) with the Banach norm |- ||g( a4, is called
a symmetric space if the conditions

re&EM,T), yeSM,7), wm(y) < pu(z) foral t>0,

imply that y € E(M, 7) and [|yllgrr) < [12llerm,n-
It is known that in the case 7(1) < oo it is true

S(M)=8(M,7) and M CEM,T)C Li(M,T)
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for each symmetric space £(M, 1), where

[e.e]

LiM,T1) = {x eSWM,7): ||z]h = /,ut(x) dt < oo}

0

In addition,
M . E(M,T) . M g E(MaT)’

and
lazbllem,ry < llallaec 10llac- lzlle,r
for all a,b € M, x € E(M,T).

Let 1) be an increasing concave continuous function on [0,00) with (0) = 0, ¥(c0) =
tlim () = oo, and let
— 00

Awwnﬂz{xesmmﬂ:nmwz/uwmdww<w}

0

be the non-commutative Lorentz space. It is known that (Ay(M,7),|| - ||y) is a symmetric
space (8], and the norm ||-||,, has the Fatou property, that is, the conditions 0 < z3, € Ay (M, 7)
for all k, and supy.q [|zx|l¢ < 0o, imply that there exists 0 < x € Ay (M, 7) such that z T

and [|zly = supgy [[@kly-
Denote by My (M, 7) the set of all x € S (M, 7) for which

t

1
Jells, = sup—o [ (ssa)

0

is finite. The set My (M, 7) with the norm || - [|pr, is a symmetric space which is called
a Marcinkiewicz space.

Denote by Mg(M,T) the closure of M in My, (M, 7). It is known [9] that the conjugate
space of (Ay(M,T),| - ||y) is identified with (M¢(M 7), || - la,,), and the conjugate space

of (Mg(M,T), | - l[az,,), under the condition lg% @ =0 s identified with(Ay (M, 7), || - |ls)-

The duality in these pairs of spaces is realized via the bilinear form (z,y) = 7(zy). It should
be pointed out that the spaces (Ay, (M, 7), - |ly), (My(M,7),|-]|lr,) and (MSJ(M,T), -llaz,)
are symmetric spaces |4, Ch.2, § 2.6], [8].

3. Isometries of Non-Commutative Lorentz Spaces

Let M C B(H) be a von Neumann algebra on Hilbert space H. A linear bijective mapping
®: M — M is called a Jordan isomorphism if ®(2%) = (®(x))? and ®(z*) = (®(x))* for all
x e M.

If &: M — M is a Jordan isomorphism, then there exists a central projection z € M such
that ®,(x) = ®(z) - 2z, z € M, is an x-homomorphism, and ®,. (z) = ®(x)- (1 — 2), z € M,
is an *-antihomomorphism (see, for example, [10, Ch. 3, § 3.2.1]). Consequently, if M is a factor
then a Jordan isomorphism & : M — M is an x-homomorphism or *-antihomomorphism.

If 7 is a faithful normal finite trace on von Neumann algebra M then a Jordan isomorphism
®: M — M is continuous with respect to measure topology ¢, generated by trace 7 (see, for
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example, [11, Ch.5, §3, Proposition 1|). Therefore, ® extends to a t,-continuous Jordan
isomorphism ®: S (M,7) — S(M,7). In addition, if 7(®(z)) = 7(z) for all z € M
then pu(t; ®(x)) = w(t;z) for all z € S(M,7), in particular, ®(E(M,7) = E(M,7)) and
H‘f’(.’L’)Hg(M?T) = ||lzlle(m,r) for all z € E(M, 7), that s, &: E(M,T) = E(M,T) is a surjective
linear isometry for any symmetric space (€(M,7), || - lg(at,r))-

Thus, it is true the following

Proposition 1. Let M be an arbitrary von Neumann algebra with a faithful normal finite
trace T, and let ®: M — M be a Jordan isomorphism such that 7(®(x)) = 7(x) for allx € M.
Then for every symmetric space (£(M,7),| - [le(m,r)) the mapping V: E(M,7) — E(M,T)
given by the equality V(z) = u- ®(z) - v, z € E(M,7), u, v are unitary operators in M,
is a surjective linear isometry.

We need the following description of surjective linear isometries of the spaces
(Ay(M, 1), - ||) and (Mg(M,T), | - llaz,) [5, Theorems 5.1, 6.1].

Theorem 2. Let M be an arbitrary von Neumann algebra with a faithful normal finite
trace T, and let V : Ay(M, 1) = Ay(M,T) (respectively, V : Mg(M,T) — Mg(M,T))
be a surjective linear isometry. Then there exist uniquely an unitary operator u € M and
a Jordan isomorphism ® : M — M such that V(z) = u - ®(z) and 7(®(x)) = 7(z) for all
xr e M.

4. Local Isometries of Non-Commutative Lorentz Spaces

Let (X, | - |x) be an arbitrary Banach space over the field K of complex or real numbers.
A surjective (not necessarily linear) mapping 7: X — X is called a surjective 2-local
isometry [2|, if for any x,y € X there exists a surjective linear isometry V,,: X — X
such that T'(z) = V, y(x) and T'(y) = Vo (y). It is clear that every surjective linear isometry
on X is a surjective 2-local isometry on X. In addition,

T(A\z) = Vyaz(Az) = AV e (2) = AT'(2)

for any x € X and A € K.

Consequently, in order to establish linearity of a 2-local isometry T, it is sufficient to show
that T'(x +y) = T(z) + T(y) for all z,y € X.

Since

IT(x) = T(W)llx = Vay(x) = VauyW)llx =z —yllx forall z,yeX,

it follows that T is continuous map on (X,| - |/x). In addition, in the case a real Banach
space X (K = R), every surjective 2-local isometry on X is a linear map (see Mazur—Ulam
Theorem [12, Ch. 1, §1.3, Theorem 1.3.5.]). In the case a complex Banach space X (K = C),
this fact is not true.

Using the description of all surjective linear isometries on a separable Banach symmetric
ideal Cg [3| (respectively, on a Banach symmetric ideal Cg with Fatou property [1]), Cg # Cp,,
in the papers |1, 2| it is proved that every surjective 2-local isometry T : Cp — Cp is a linear
isometry.

The following Theorem is a version of the above results for the spaces Ay(M,7) and
MY (M, 7).

Theorem 3. Let M be an arbitrary factor with a faithful normal finite trace T, and let
T: Ay(M,7) = Ay(M,7) (respectively, T : M)(M,T) — MJ)(M,T)) be a surjective 2-local
isometry. Then T is a linear isometry.



2-Local Isometries of Non-Commutative Lorentz Spaces 9

< Fix z,y € M and let V., @ Ay(M,7) = Ay(M,7) be a surjective isometry such
that T'(x) = V,y(z) and T(y) = V3 4(y). By Theorem 2, there exist uniquely an unitary
operator u € M and a Jordan isomorphism ® : M — M such that V, ,(a) = u - ®(a)
and 7(®(a)) = 7(a) for all a € M. Since M is a factor it follows then ® : M — M is an
s-isomorphism or ® is an *-anti-isomorphism.

We assume that @ is an #-isomorphism (in the case when ® is an s-anti-isomorphism,
the proof is similar).

We have

T(T(x) - (T(Y)) = 7(Vay(x) - (Vay(y)))
=7(u-@(x)- (u-2(y)") = 7(u- e(zy") - u") = 7(2(2y")) = 7(2y").

Consequently, 7(T'(z) - (T'(y))*) = 7(xy*) for all z,y € M.
If z,y,2z € M, then

T(T(@+y)-(T(2)) =7((z +y)z"), 7(T(x) T(2)%) = 7(xz"),

T(T(y) - T(2)") =7(y- 2").
Therefore
T((T(x+y) = T(x) =T(y) - (T(2)") =0
for all z € M. Taking z =z +y, 2 = x and z = y, we obtain

((T(x+y) = T(x) =T(y) - (T(z+y) - T(z) - T(y))") =0,

that is, T(x + y) = T(x) + T(y) for all z,y € M.

Since the Lorentz space Ay (0, 00) of measurable functions on a semi-axis [0, 00) is separable
space [13, Ch. 2I, §5], it follows that the non-commutative Lorentz (Ay(M,7),] - ||y) has
an order continuous norm |14, Proposition 3.6], that is, |||y J 0 whenever z, € Ay (M, T)
and z,, | 0. Consequently, the factor M is dense in the space A (M, 7). Since T is a continuous
mapping on Ay (M, 7) it follows that T'(x +y) = T'(x) + T (y) for all z,y € Ay(M, ), that is,
T is a surjective linear isometry.

For the space Mg(M,T), the proof of the linearity of the surjective 2-local isometry
T: Mg(/\/l, T) — Mg(M, T) repeats the previous proof. >
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(Cg, || |lcy) be a separable or a perfect Banach symmetric ideal with not uniform norm, that is ||p||c, > 1
for any finite dimensional projection p € Cg with dimp(#) > 1, let Cg # Ca, and let V : Cp — Ch
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1. Introduction

The study of linear isometries on classical Banach spaces was initiated by S. Banach.
In [1, Ch. XI|, he described all isometries on the space L,[0,1] with p # 2. In |2|, J. Lamperti
characterized all linear isometries on the Ly-space L,(Q, A, 1), where (Q, A, i) is a measure
space with a complete o-finite measure . Both S. Banach and J. Lamberti used a method for
description of linear isometries on L,-spaces that was independent of the choice of a scalar field.
For studying linear isometries on the broader class of function symmetric spaces E (2,4, u),
different approaches are required that depend on a scalar field. If E(€, A, u) is a complex
symmetric space then G. Lumer’s method [3] based on the theory of Hermitian operators
can be effectively applied. For example, M. G. Zaidenberg [4, 5] used this method for
description of all surjective linear isometries on the complex symmetric space E(,.A4, u),
where p is a continuous measure. For the symmetric space £ = FE(0,1) of real-valued

(© 2019 Aminov, B. R. and Chilin, V. L.
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measurable functions on the segment [0, 1] with a Lebesgue measure p, where E is a separable
space or has the Fatou property, a description of surjective linear isometries on E was given
by N. J. Kalton and B. Randrianantoanina [6]. They used methods of the theory of positive
numerical operators. For real symmetric sequence spaces, a general form of surjective linear
isometries was described by M. Sh. Braverman and E. M. Semenov |7, 8]. They used methods
based on the theory of finite groups. For complex separable symmetric sequence spaces
(symmetric sequence spaces with the Fatou property), a general form of surjective linear
isometries was described in [9] (respectively, in [10]).

Naturally, the next step is to describe surjective linear isometries in the noncommutative
situation, when symmetric sequence spaces are replaced by symmetric ideals of compact
operators.

Assume (M, (+,-)) is an infinite-dimensional complex separable Hilbert space. Let B(H)
(respectively, K(H)) be the C*-algebra of all bounded (respectively, compact) linear operators
on H. For a compact operator z € K(H), we denote by p(z) = {u(n,x)}zozl the singular
value sequence of x, that is, the decreasing rearrangement of the eigenvalue sequence of
|z| = (:c*x)% We let Tr denote the standard trace on B(H). For p € [1,00) (p = 00), we let

Cp = {x € K(H) : Tr(|z?) < oo} (respectively, Coo = K(H))

denote the p-th Schatten ideal of B(#), with the norm

=

|z, = Tr(]x\p) (respectively, |||l := sup |u(n,x)|).

n>1
In 1975, J. Arazy [11], [12, Ch. 11, § 2, Theorem 11.2.5] gave the following description of all
the surjective isometries of Schatten ideals Cp.
Theorem 1. Let V : C, — Cp, 1 < p < 00, p # 2, be an surjective isometry. Then there
exist unitary operators u, and ue or anti-unitary operators vy and vy on H such that either
Va =wujzug or Vo = viz*vg for all x € C,.

Recall that a mapping v : ‘H — H is an anti-unitary operator if
V(AR + f) = Xo(h) +o(f) and [Jo(h)lln = (Al

for every complex number A and h, f € H. If v is an anti-unitary operator then there exists
an anti-unitary operator v* such that (h,v(f)) = (f,v*(h)) for all h, f € H (see, for example,
[12, Ch. 11, §2)).

The Schatten ideals C, are examples of Banach symmetric ideals (Cg, || - [|c;) of compact
operators associated with symmetric sequence spaces (E,| - ||g) (see Section 2.2 below).
In 1981 A. Sourour [13] proved a version of Theorem 1 for separable Banach symmetric
ideal (Cg, || - |lcy) such that Cg # Ca. Recently [14], a variant of Theorem 1 was obtained for
any perfect Banach symmetric ideals (Cg, || - |lcg ), Ce # Ca (recall that (Cg, || ||c,) is a perfect
ideals, if Cp = C;™ [15] (see Section 2.2 below)).

It is clear that for any unitary or anti-unitary operator u the linear operators Vj (z) = uzu*
and Va(z) = —uru* acting in a real Banach space (C%, || -||cy ) are surjective isometries, where
Ch={reCp:x=a"}

Our main result states that if (Cg, || - ||c,) is a separable or a perfect Banach symmetric
ideal of compact operators such that Cp # Co, there are no other isometries in (C&, | - |lcp):

Theorem 2. Let (Cg, | - ||c,) be a separable or a perfect Banach symmetric ideal with
not uniform norm, Cg # Co, and let V: C% — Cg be a surjective isometry. Then there exists
unitary or anti-unitary operator u on H such that V can be written in the form V(x) = uxu*
(x € CI) or in the form V (z) = —uzu* (x € Ch).
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An analogous result for the space of self-adjoint traceless operators on a finite
dimensionalal Hilbert space was obtained by G. Nagy [16].

2. Preliminaries

2.1. Symmetric Sequence Spaces. Let (o, (respectively, ¢y) be the Banach lattice of all
bounded (respectively, converging to zero) sequences {,}5° ; of real numbers with respect
to the uniform norm [|{£,}5%;|loc = sup,en |€n|, where N is the set of natural numbers. If 28
is the o-algebra of all subsets of N and p({n}) = 1 for each n € N, then (N, 2N, ;1) is a o-finite
measure space, Loo(N, 2N, 1) = £,

Ly(N,2%, ) = by = {{én 1 CR: (&M =D 16l < 00}7
n=1

where R is the field of real numbers. If £ = {£,}°°, € [, then the non-increasing
rearrangement £* : (0,00) — (0,00) of £ is defined by

() =imf{A: p({lg] > A}) <t}, £>0,

(see, for example, [17, Ch. 2, Definition 1.5]).
Therefore the non-increasing rearrangement £* is identified with the sequence £* = {{}},
where

*= inf s .
&n=jnf n;l;|fn|
card(F)<n

A non-zero linear subspace E C (o, with a Banach norm ||| g is called symmetric sequence
space if conditions n € E, £ € ly, £* < n* imply that £ € E and ||¢||g < ||n]|E-

If (E,||-|lg)is a symmetric sequence space, then ¢; C E C {4, in addition, ||£||g < ||£]1
for all € € 41 and ||{]|oc < ||€]|E for all £ € E [17, Ch. 2, §6, Theorem 6.6]. If there exists
¢ € (E\ ¢) then & > al for some a > 0, and therefore 1 € E, where 1 = {1,1,...}.
Consequently, for any symmetric sequence space F we have that ¥ C ¢y or F = {.

2.2. Banach Symmetric Ideal of Compact Operators. Let (, (+,-)) be an infinite-
dimensional complex separable Hilbert space, let B(H) (respectively, K(H),F(H)) be the
x-algebra of all bounded (respectively, compact, finite rank) linear operators in H, and let
P(H) = {p € B(H) : p = p* = p?}. It is known that x-algebras B(H) and K(H) are
C*-algebras with respect to the uniform operator norm, which we shall denote by | - ||oc-
For a subset A C B(H), we set A" = {zx € A: 2 =x*}.

It is well known that F(H) C Z C K(H) for any proper two-sided ideal Z in B(H) (see for
example, [18, Proposition 2.1]).

If (E,] - |lg) C co is a symmetric sequence space, then the set

Cp:={zeK(H): {,u(n,x)}zo:l € E}

is a proper two-sided ideal in B(#) (see |18, Theorem 2.5]). In addition, (Cg, ||-||c,) is a Banach
space with respect to the norm |z|c,, = [[{p(n,z)}|£ [19] (see also [20, Ch. 3, §3.5]), and
the norm || - ||¢, has the following properties:

1) lzzylles < 17llooll¥llocll2]lcp for all z,y € B(H) and z € Cg;

2) ||zllcy = ||1z]loo if © € F(H) is of rank 1.
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In this case we say that (Cg, || - ||cy) is a Banach symmetric ideal (cf. [18, Ch. 1, §1.7], |21,
Ch. III]). It is known that C; C Cg C K(H) and ||z|lc, < ||z]1, |¥llo < ||yllc, for all x € Cq,
y € Cg.

If (E,||-||g) is a symmetric sequence space (respectively, (Cg, ||-|lc,) is a Banach symmetric
ideal), then the Kothe dual E* (respectively, Cj;) is defined as

E* = {5 = {&nutne1 € loo t EN = {&uMntnzy € 41 forall n={n.};2, € E}a

(respectively, Cp = {x €EB(H): azyeCy forall ye CE}>,

and
oo
el =sup{ 3~ euml: 0=t} € B, Inls <1}, €€ B,
n=1
(respectively, ||3:HC;J = sup{Tr(|:cy|) cy €Cr, lylle, < 1}, T € Cg)

It is known that (E*,| - ||gx) is a symmetric sequence space [22, Ch. II, §4, Theo-
rems 4.3, 4.9] and ¢ = {w. In addition, if E # ¢; then E* C ¢y. Therefore, if E # {1,
the space (Cj, || - HCE) is a symmetric ideal of compact operators.

A Banach symmetric ideal (Cg, || - ||c,,) is said to be perfect if Cp = Ci™ (see, for examp-
le, [15]). It is clear that Cg is perfect if and only if E = E**.

A symmetric sequence space (E, || - ||g) (a Banach symmetric ideal (Cg, || - [|c,;)) is said to

possess Fatou property if the conditions
0 <&k <&ki1, & € E (respectively, 0 < xp < Ty1, 2 € Cp) forall ke N

and supy>1 ||&k||r < oo (respectively, supy~q ||zk|lc, < 0o) imply that there exists an element
§ € E (respectively, x € Cg) such that & 1§ and [|{]|g = supy>q [|€k]|E (respectively, z T
and [[2]c; = supys, 2k llce).

It is known that (E,| - ||g) (respectively, (Cg,| - |lc;)) has the Fatou property if and
only if E = E** [23, Vol.II, Ch. 1, Section a| (respectively, Cg = C;* [24, Theorem 5.14]).
Therefore (Cg, | - ||c;) is a perfect Banach symmetric ideal if and only if (Cg, || - ||c,) has the
Fatou property.

If y € CJ;, then a linear functional fy(z) = Tr(z-y), « € Cg, is continuous on (Cg, |- |lc,),
in addition, || fyllc; = HyHcg, where (Cg, || - llcz,) is the dual of the Banach space (Cg, | - [lcy)

(see, for example, [15]). Identifying an element y € Cj; and the linear functional f,, we may
assume that C7; is a closed linear subspace in Cj,. Since F(H) C Cj, it follows that Cj; is a total
subspace in Cj;, that is, the conditions € Cg, f(z) = 0 for all f € C; imply = 0. Thus,
the weak topology o(Cg,C}) is a Hausdorff topology, in addition F(H) (respectively, F(H)")
is 0(Cg,C})-dense in Cg (respectively, Cp).

3. Skew-Hermitian Operators in Banach Symmetric Ideals

Let X be a linear space over the field K of real or complex numbers. A semi-inner product
on a space X is a K-valued form [-,-]: X x X — K which satisfies

(i) l[ax +y,z] =[x, 2] + [y, 2] for all « € K and z,y, z € X;
(1) [r,ay] =a - [z,y] for all « € K and z,y € X
(#i7) [z, z] > 0 for all z € X and [z, x] = 0 implies that x = 0;
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() [z, y]|* < [z,2] - [y,y] for all z,y € X

(see, for example, |25, Ch.2, §1]).

The function ||z|| = /[z, ] is the norm on a linear space X. Conversely, if (X, || - |x)
is a normed linear space, then there exists semi-inner product [-,-] on X compatible with
the norm || - || x, that is, ||z||x = \/[z, 2] [25, Ch. 2, § 1]. In particular, the semi-inner product
(compatible with the norm || - |[x) can be defined using the equation [z,y] = ¢, (x), where
oy € X*, lloyllxs = |lyllx and ¢, (y) = |ly|% (such functional is called a support functional
at y € X) [25, Ch. 2, §1, Theorem 10].

Let (X,]|| - |lx) be Banach space over field K, and let [-,:] be a semi-inner product on X
which is compatible with the norm || - ||x. A linear bounded operator H: X — X is said
to be skew-Hermitian, if Re([H(x),z]) = 0 for all x € X, where Re(a) is the real part
of number a € K [12, Ch.9, §4]. In particular, if K = R then ¢,(H(z)) = [H(z),z] = 0
for every z € X.

The following Proposition is well known [12, Ch.9, §4, Proposition 9.4.2].

Proposition 1. Let (X, | - ||x) be a real Banach space and let H be a skew-Hermitian

operator on X. If V: X — X is a surjective isometry then an operator V - H -V~ is a skew-
Hermitian.

It is clear that in the case (X, | - ||x) = (Ck,| - |lcy) every linear operator H : C% — Ch
defined by H(z) = i(za — ax),z € Ck, where a € B(H)", i = —1 is a skew-Hermitian
operator.

The following Theorem gives a description of skew-Hermitian operators acting on Cg
when Cp is a separable or perfect Banach symmetric ideal other than Cs.

Theorem 3. Let (Cg, | - ||c,) be a separable or perfect Banach symmetric ideal, and let
Cg # Ca. Then for any skew-Hermitian operator H : Ch — Ch there exists a € B(H)" such
that H(x) = i(ra — ax) for all x € C}.

<1 We slightly modify the original proof of Sourour [13]. For vectors £,n € H, denote by
£ ®mn the rank one operator on H given (£®n)(h) = (h,n)&, h € H. It is easily seen (z,£®@n) :=
Tr((n®@&)-z) = (2(n),&) for any x € B(H)" and £,n € H. If y = £RE, ||€|lx = 1, then y is an
one dimensional projection on H and ||y|/c, = [|y||cc = 1. Thus for a linear functional f,(z) :=
(z,y) = Tr(y*z),z € C%, we have that fy(y) = Tr(y?) = Tr(y) = (£,€) =1 = Hy||(23E In ad-
dition, if o & Cl and [lole, < 1 then |f,()] = [Tr(ya)| = [2(€), )] < loloe < Joles < 1
Consequently, nyH(cg)* =1 = ||yllc,. This means that f, is a support functional at y € Cl,
and [z,y] = f,(z) is a semi-inner product on C% compatible with the norm || - ||cg (|25, Ch. 2,
§ 1, Theorem 10].

Step 1.1 &,n e H, (n,€) =0, then (H(n®n),E®&) =0.

We can assume that ||n|l = ||£][x = 1. Since p = n ® n is one dimensional projections
and H is a skew-Hermitian operator, it follows that
0=[H(p),pl = fp(H(p)) = (H(p),p)- (1)

By Lemma 9.2.7 (|12, Ch. 9, §9.2], see also the proof of Lemma 11.3.2 [12, Ch. 9, §11.3]), there
exists a vector £ = {&1,&} € (R2, || - ||g), & > 0,& >0, |[¢]|g = 1, such that the functional

FUm,m}) = mér +m2&a, {n1,m2} € R2, is a support functional at ¢ for space (R2,| - ||g).
Let us show that the linear functional

So(y) = <?/,$>a Yy e C%a T = glp + SQQa

is a support functional at = for (C2, || - |lc,)-
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Since f is support functional at & for (R% | -||g) and |||z = 1, it follows that
& +& = f({&,&)) = f(€) = €% = 1. Furthermore, by || f]| = ||€|lz = 1, we have that

[f({m,me})| = [&m + &amp| < 1 for every {m,n2} € R* with ||{m,n2}]|p < 1.
Further, by [21, Ch.II, §4, Lemma 4.1|, we have

Iym),m] < py), (W) < uly), |y, +1(y(E),) < u(l,y) +pu2,y),

that s, {(y(m),n), W(€), O} <= {u(1,y),u(2y)}. Since (B,|| - ) is a fully symmetric
sequence space, it follows that

I{Gy(m),m), (w(€): OMHe < [{u(y), w2 9)H e < lylee-

Consequently, if y € Cf and |y|lc,, < 1, then

o) = [y, 2)| = 16 Tr(py) + &Tr(qy)| = | £ ({wm).n), (&), })] <1,

that is, H<PH(cg,||.||E)* < 1. Since ||z|c, = [|€]lg = 1 and

p(z) = (z,2) = (Gp+ &q.6p+ &q) = Tr(Gp + &9)(Gp+ &) =G + & =1,

it follows that H<PH(cg,||.||E)* =1=|z[lc, and @(x) = [[«[|3,. This means that ¢ is a support

functional at x for space (C&, | - |lcy)-
Hence,

0= [H(z),2] = p(H()) = (H(2),z) = (&1H (p) + &2H(q), &1 + &24)-

Since (H(p),p) = (H(q),q) = 0 (see (1)), it follows that

(H(p),q) = —(H(q),p)- (2)

We extend n; =1, n2 = £ up to an orthonormal basis {n; }°,, and let p; = n; ®n;. Now we

replace our operator H with another skew-Hermitian operator Hy. Let u be a unitary operator

such that u(ny) = n2, w(n2) = m and u(ng) = ny if & # 1,2. It is clear that v* = u~! = u,

upiu = pa, upau = p1, up;u = p;, i # 1,2, and V(z) = uaru* = uzru is an surjective isometry
on CP, in addition, V= = V.

By Proposition 1, a linear operator H; = VHV ™! is a skew-Hermitian operator,
in particular, (Hq(pg),pr) = 0 for all k € N (see (1)).

If i,5 # 1,2, then

(Hi(pi),pj) = (uH (pi)u,p;) = Tr(pjuH (p)u) = (uH (p;)u(n;), n;)
= (H(pi)u(ny), u"(n;)) = (H(pi)(nj),n;) = Te(p; H(p)) = (H(pi), ps)-

Ifi=1, j+#1,2, then

(Hi(p1),p;) = (uH (p2)u, p;) = Tr(pjuH (p2)u) = (uH (p2)u(n;), n;)
= (H(p2)u(ng), v (1)) = (H(p2)(n;),nj) = Tr(p;jH(p2)) = (H(p2), pj)-
Similarly, we get the following equalities
(i) (Hi(p2),p;) = (H(p1),pj) i i=2,j#1,2
(ii) (Hi(pi),p1) = (H(pi),p2) if j=1,i#1,2;
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(44i) (H1(p1),p2) = (H(
(iv) (Hi(p2),p1) = (H(
It is clear that Hy =

(Ho(pi),pj) = 5((H (i), p;
1= 2]751 ) we get

2),p1) ifi=17=2
1),p2) ifi=2 5=1
(H — Hy) is a skew-Hermitian operator, and if ,j # 1,2, then
) — (Hi(pi),pj)) = 0. Similarly, if i« = 1, j # 1,2 (respectively,

SRS

S NI

((H(p1),pj) — (H(p2),p5))

DN |

(Ho(p1),pj) =

(respectively, <H0(p2),pj> = 1(<H(Z72),pj> - <H(P1)7pj>))7

that is, (Ho(p1),p;) + (Ho(p2),p;) = 0 in the case j # 1,2.
Simmilarly, {Ho(p;), p1) + (Ho(pj),pa) = 0 if j # 1,2. Since

1(<H(101) 2) — (H(p2),p1)), (H(p1),p2) = —(H(p2),p1)

<H0(p1),p2> = 9

(see (2)), it follows that (Hy(p1),p2) = (H(p1),p2). Similarly, we get that (Ho(p2),p1) =
—(H (p1),p2). Finally, since Hy is a skew-Hermitian operator, we have (Hy(p), pr) = 0 for all
k € N (see (1)).
Let n be the smallest natural number such that the norm || - || is not Euclidian on R”™.
Then there exist (see, [10, Lemma 5.4|) linear independent vectors £ = (§1,&2,...,&n), 1 =

(N1,M2, -+ ,1n) € R™, ||€]|p = 1, such that
1Elle = Izl = f2(§) =1, (3)

where f,(¢) = >y Gimi, ¢ = (¢1, €2, ..., (n) € R™. By rearranging the coordinates we may
assume that 119 # omy.
Let x = 30, &1y, y = 25—y 3wy, and let @y (2) = (2,y) = 27 ;- Tr(p;2), = € Ch.
Let us show that ¢, is a support functional at x for (Cg, |-l ). Since || f ||z« = 1 (see (3)),
it follows that | f,(C)| = | X1y 1| < 1 for every ¢ = {¢;}7, € R™ with ||{||g < 1. Note that

[zlles = [1€lle = 1.
We should show that ||p,|| = [|z[c; =1 and ¢, (x) = ||z[z, = 1. Indeed,

py(z) = (z,y) = <ijpjaz77jpj> = &mj = (&) = 1= ||z[lz,-
=1 j=1 j=1

If z € CL, ||zllc, < 1 then |p,(2)] = |Z§L:1 nj(z(nj),nj)| < 1. The last inequality follows
from
{(2(771)’771)’ (Z(UQ)ﬂh)’ SRR (Z(nn)a"?n)} = {H(l’ Z)’H(2’ Z)’ s ’:U’(n’ Z)}

(see |21, Ch.II, §4, Lemma 4.1]). Therefore |py|| = ||z|lc, =1 and ¢, (z) = HxH%E = 1. This

means that ¢, is a support functional at x for (CR.| - | k).
Consequently,
0= (Ho(x),y) = (&Ho(p1) + - - - + &aHo(pn), mp1 + - - - + NPn)

= (&1m2 — &am ) (Ho(p1), p2) + (&1m3 — Eam3) (Ho(p1), p3)
+ o4 (Cann — o) (Ho(p1), P ) + (&3m0 — E3m2)(Ho(ps), p1)
+ oA (& — &am2) (Ho(pn), p1)-
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Let now & = &ip1 + &op2 — §3p3 — - .. — &nppn and § = mp1 + nep2 — N3P3 — ... — NnPn-
As above, we have that ¢g(-) = (-,9) is a support functional at . Consequently,

0= (Ho(Z),5) = (&1m2 — Eam){Ho(p1), p2) + (=&ins + &ams) (Ho(p1), p3)
+ oo (=& + Eom) (Ho(p1), pr ) + (—E&3m + &3n2)(Ho(ps), 1) (5)
oo+ (=&am + &) (Ho(pn), p1)-

Summing (4) and (5) we obtain 2(&1m2 — &am)(Ho(p1),p2) = 0, that is, (H(p1),p2) =
(Ho(p1),p2) = 0.

Step 2. Let n € H, |nllx = 1, p=n®n, z € K(H)", and let Tr(zq) = 0 for any one
dimensional projection g with gp = 0. Then there exists f € H such that z =n&® f+ f®n —
(m@n)(f @n), [Iflln < llz]lo-

Indeed, if ¢ is an one dimensional projection with gp = 0 then ¢grq = aq for some a € R,
and 0 = Tr(zq) = Tr(qzq) = Tr(aq) = a, that is, @« = 0 and qzqg = 0. Let e € P(H),
dime(H) =1,ep =0,eq =0,y = (g + e)z(q + e). If y # 0 then there exists r € P(H),
dimr(H) = 1 such that r < ¢+ e and rzr = ryr = pr for some 0 # 8 € R. Since rp = 0,
it follows that 0 = Tr(xr) = Tr(rar) = f # 0. Thus y = 0. Continuing this process, we
construct a sequence of finite-dimensional projections g, T (I — p) such that g,zg, = 0 for all
n € N, where I(h) = h, h € H. Consequently, (I —p)z(l —p) =0.

If f=uax(n) then zp = f @ n and pr =n® f. In addition,

(I = p)ap(h) = (I = p)a((h,n)n)) = (h,n)(I —=p)f, heH,

that is, (I — p)xzp = (I — p)f @ n. Therefore,

r=pr+{I—-prp=n@f+ U —-p)f®n and |flx < ||7|c-

Step 3. Let n € H, ||Inllx = 1, p = n ®n. Then there exists f € H such that

Hnen) =ne f+fon  |fllx<I[H].

Indeed, if x = Hn®mn), £ € H, (n,€) =0, ¢ = £ ®E, then by Step 1 we obtain that
(2(€),8) = (2,6 ®&) = Tr(x - £ ® &) = 0. Using Step 2, we have that there exists f € H such
that Hp@n) =2z =n f+ f@n—(n®n)(f ®n). Since H is a skew-Hermitian operator,
it follows that

0=(Hman),nen) =nef+fon—nmen)(fen).,nn)
=Tr(nennef+fon—nen(fen))
=Tr(n@n)®m® f) = (e fm).m) = 0 f).

Thus (n, f)=0andz=n® f+ f@n—(nen)(f®n) =n® f+ f@n. In addition,
1l < llzlloo < ll2lles = [Hm@0)llee < H| - In@nlles = [[HI - [In®@nllee = [1H].

Step 4. There exists a € B(H) such that H(x) = ax + za* for every x € Cp.

Let {pi}2; = {m ® 1;}32, be a basis in real linear space F(H)", where {n;}32,
is an orthonormal basis of H. For every n; € H there exists f; € H such that H(n; @ ;) =
;@ fi+ fi®n;, and || filli < ||H|| for all i € N (see Step 3). Define a linear operator a: H — H
setting a(n;) = fi. Since ||fil|lx < ||H]|| for all i € N, it follows that a € B(H), in addition,
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H(p;) = n; ® a(mi) + a(n;) @ n;. Since m; @ a(n;) = (n; @ n;)a” and a(n;) @ m; = a(n; @ 1;), it
follows that H(z) = ax + za* for all z € F(H)".

If (Cg,| - |lcy) is a separable space then F(H)" is dense in (CL, | - |lc;;). Consequently,
H(z) = az + za* for all x € CP.

Let now (Cg.| - |lcy) be a perfect Banach symmetric ideal. Repeating the proof
of Theorem 4.4 [14] that establishes the o(Cg, C5 )-continuity of the Hermitian operators acting
in (Cg,| - |lcy), we obtain that the skew-Hermitian operator H also o(Ch, (C5)")-continuous.
Since the space F(H)" is o(Ch, (C5)")-dense in C, it follows that H(x) = ax + xa* for all
z€Ch.

Step 5. a = ib for some b € B(H)".

Indeed, if a = ay + ias, a1, as € B(H)", then

H(z) = ax + za™ = a1z + zay + i(agx — zaz) = S1(z1) + Sa(x),

where S1(x) = a1z + zaq, So(x) = i(agx — xag), x € Cg. Since H and Sy are skew-Hermitian,
it follows that S; = H — S5 is also skew-Hermitian.

If p € P(H), dimp(H) = 1, then the lineal functional ¢(y) = (y,p) = Tr(yp), y € Ch,
is support functional at p. Thus Tr(pa;p + pai) = Tr(Si(p)p) = 0, that is, —Tr(pa;) =

Tr(paip) = Tr(pai). This means that Tr(pa;) = 0 for all p € P(H) with dimp(H) = 1.
Consequently, Tr(za;) = 0 for all z € F(H), and by [26, Lemma 2.1] we have a; = 0.
Therefore, a = iasy. >
4. The Proof of Theorem 2
Let (Cg, | - |lcg) be a Banach symmetric ideal. We say that a bounded linear operator

T:Ch — C has the property (P) if for any a € B(H)" there are operators b € B(H)" and
c € B(H)" such that T'(i(bx —xb)) = i(aT(x) —T(x)a) and T(i(ax —xa)) = i(cT(x) —T(z)c)
for all z € Ch.

It is clear that a bounded linear bijection T': Cg — Cg has the property (P) if and only
if 7! has the property (P).

Lemma 1. Let (Cg,| - |lc;) be a separable or a perfect Banach symmetric ideal other
than Co, and let V : Cg — Cg be a surjective isometry. Then an isometry V has the
property (P).

< If @ € B(H)" then the linear operator H : Cf — C% defined by H(z) = i(va — ax),
T € C}}, is a skew-Hermitian operator. By the Proposition 1 the operator V! H -V is also
skew-Hermitian. Using the Theorem 3 we obtain that there exists b € B(H)" such that
V=L H - V(z) =i(bz — ab), that is, i(aV () — V(2)a) = V (i(bx — xb)) for all x € C}.

Similarly, V - H - V™! is a skew-Hermitian operator. Hence, there exists an operator ¢ €
B(H)" such that V-H-V~1(y) = i(cy—yc) for all y € C. If V=1(y) = x, then V (i(az—za)) =
i(cV (z) — V(x)c) for all z € Ch. 1>

Let (Cg, || |lc;) be a Banach symmetric ideal, 0 # = € C%, and let Z(x) = {x} NB(H)" =
{y € B(H)" : xy = yz}. A non-zero operator z € C% is said to be a C,-maximal if Z(z) = Z(y
for any 0 # y € C with Z(x) C Z(y) (cf. [27, Definition 1.4]).

Lemma 2. The following conditions are equivalent:

(i) x € Ch is a Ch-maximal operator;

(13) x = ap, where 0 #p e P(H) N F(H), 0 # a € R.
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< (i) = (ii). Since x € Ch, it follows that z = "' A\ips;, t € N or t = oo (the series

converges with respect to the norm || - [|o), where 0 # p; € P(H) N F(H), pipj =0, i # 7,
0# XN € R, forall4,j =1,...,t. If y € Z(z) then yp; = pyy |28, Ch.1, §4, p. 17|, that
is, Z(z) C Z(p;) for all i = 1,...,t. Since, = is a C—maximal operator, it follows that
Z(x) = Z(p;), thus Z(p;) = Z(pg) for all i,k =1,...,t

Suppose that ¢t >2. As Z(p1) = Z(p2), we have

)Y =} ={a p+8-(I—p2): a,feC},

that is, p1 = ag - p2+ Bo - (I — p2) for some g, By € C. Consequently, 0 = pips = ag - p2, and
ag = 0. Therefore p; = 3y - (I — p2), which contradicts the inclusion p; € F(#H). Thus t =1
and = A\p1.

(i3) = (i). Let = = ap, where 0 # p € P(H)NF(H), 0 #a € R. If0 # y € C& and
Z(x) C Z(y) then Z(p) = Z(x) C Z(y), and y € {y}" C{p}" = {a-p+B-(I-p):a,B € C},
that is, y = ag - p+ Bo - (I — p) for some ay, fy € C. Since y is a compact operator, it follows
that Bp =0, that is, y =ap-p and Z(z) = Z(y). >

Lemma 3. Let T': Cg — Cg be a bounded linear bijective operator with the property (P).
Then T'(x) is a Ch -maximal operator for any C%—maxima] operator T € C%.

<1 Suppose that x € CE is a Cg—maximal operator, but T'(x) is not C%—maximal, that is,
there exists 2 € C% such that Z(T(x)) C Z(z) and Z(T(x)) # Z(z). Since T is a bijection,
z = T(y) for some y € Ck. Hence, Z(T(z)) C Z(T(y)) and Z(T(x)) # Z(T(y)).

We show that Z(x) C Z(y). Since an operator 7" has property (P), it follows that for
a € Z(z) there exists b € B(H)" such that

T(i(ac — ca)) = i(bT(c) — T(c)b) (6)
for all ¢ € CI. Using equations (6) and T'(i(ax — za)) = T'(0) = 0, and the injectivity of the
mapping 7', we obtain that bT(z) = T'(z)b, that is, b € Z(T(z)) C Z(T(y)). Consequently,

T(i(ay — ya)) = 0 and ay — ya = 0 (see (6)), i.e. a € Z(y). Therefore Z(x) C Z(y), and
by the Cl-maximality of the operator  we obtain that Z(z) = Z(y).

Since Z(T'(x)) # Z(T'(y)), there exists an operator a € Z(T'(y)) such that a ¢ Z(T(z)).
By the property (P) we can choose b € B(H)" such that

T(i(bc — cb)) = i(aT(c) — T(c)a) (7)

for all ¢ € C&. Thus T(i(by — yb)) = 0, and by — yb = 0, that is, b € Z(y). Besides, aT(z) —
T(x)a #0 1mphes that bz — xb # 0 (see (7)), that is, b ¢ Z(z), which contradicts the equality

Z(x) =Z(y). >

Lemma 4. Let V : Cg — Cg be a surjective linear isometry with the property (P).
Then for every p € P(H) N F(H)) there exists q, € P(H) N F(H) such that V(p) = g, or
V(p) = —p-

< Let 0 # p; € P(H)NF(H), i = 1,2, pip2 = 0. Since p; is a Ch-maximal operator
(Lemma 2), it follows that V(p;) is a Cp-maximal operator too, i = 1,2 (Lemma 3).
Consequently, there exist 0 # ¢; € P(H) N F(H), and 0 # «; € R such that V(p;) =
a;q;, © = 1,2 (Lemma 2). Since p1ps = 0, it follows that (p1 + p2) € P(H) N F(H) and
V(p1+p2) = asgs for some non-zero projection g3 € P(H)NF(H) and 0 # a3 € R (Lemma 2).
Therefore $1q1 + §2q2 = g3. By [29] there are four possibilities:

() gy =1 2 =11if g2 =0;
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as =L g =-11if qug2 = g2;
(i) & = —1,22 =1 and q1¢2 = qu;

as 7 as

(iv) &+ 92 =1 and (g1 — g2)* = 0 if qiga # goqn.

The case (iv) is impossible because ||(¢1 — ¢2)||% = (g1 — ¢2)?||oc = 0, which contradicts
the bijectivity of V. In other cases we have V(p2) = agy or V(p2) = —age, where o = aj.
Consequently, V(p) = agp, or V(p) = —agq, for an arbitrary 0 # p € P(H) N F(H), pip = 0.

Let now 0 # e € P(H) N F(H) and pie # 0. Then there exists a non-zero finite
dimensional projection f, such that p;f = 0 and ef = 0. According to above, we have
a1qr = V(p1) = apgp, or V(p1) = —asqp, and V(e) = apge or V(e) = —aysge for some
non-zero finite dimensional projections ¢y, ¢ and for non-zero real number «y. Consequently,
¢1 = @p, and a1 = Fay. In particular, V(e) = ayge or V(f) = —aige.

If ¢ € P(H) and dime(H) = 1, then 1=|elles =V (e)les =lalldellcs > lallgelloo=lal,
that is, |o| < 1.

Replacing the isometry V with V=1 we get that V~1(p) = Br, or V~1(p) = —Br, for
arbitrary p € P(H)NF(H), where r, € P(H)NF(H) and S does not depend on the projection
p. In particular, if e € P(H) N F(H) and dime(H) = 1, then 1 = |le|lcy, = [V (e)|ley =
Blllrelles = [BllIrellc = 18], i-e. [B] < 1.

Therefore, for p € P(H) N F(H) we obtain that V(p) = +ag,, and p = V1(+aq) =
+(af)rq. Hence || =1 and |a| = 1. >

We say that the norm || - ¢, is a not uniform if ||p||c, > 1 for any p € P(H)NF(H) with
dimp(H) > 1.

Lemma 5. Let (Cg, || - ||c,) be a Banach symmetric ideal with not uniform norm, and let
V:Ch — CL be a surjective isometry with the property (P). Then V(p) or (=V)(p) is one
dimensional projection for any one dimensional projection p.

< Let p € P(H) N F(H), dimp(H) = 1. By Lemma 4 we have that there exists ¢, €
P(H) N F(H) such that V(p) = ¢, or V(p) = —qp. If dimg,(H) > 1 then 1 = |[|p|l¢, =
WV (p)llex = llapllcy > 1, what is wrong. >

Lemma 6. Let (Cg, || - |lc,) and an isometry V' be the same as in the conditions of the
Lemma 5. Then

V(P(H)NF(H)) CPH)NF(H)

or

(=V)(P(H) N F(H)) € P(H) N F(H).

< Let Pi(H) = {p € P(H) : dimp(H) = 1}, and let p,e € P1(H). By Lemma 5, there
exists ¢,r € Py1(H) such that V(p) = q or V(p) = —q and V(e) = r or V(e) = —r. If
V(p) =¢q, V(e) = —r then ¢ —r = V(p+q) = £f for some 0 # f € P(H) (see Lemma 4),
which is not possible because ¢, € Pi(H). Similarly, the case V(p) = —q, V(e) = r is
also impossible. Consequently, V(P1(H)) € Pi(H) or (=V)(Pi(H)) € Pi(H). Since each
projector p € P(H) N F(H) is the final sum of one-dimensional projectors, it follows that
V(IP(H)NF(H)) CPH)NF(H) or (=V)(PH)NF(H)) CPH)NF(H). >

Corollary 1. Let (Cg, || - |lc,) and V' be the same as in the conditions of the Lemma 5.
Then

(i) V(p)V(e) =0 for any p,e € P(H) N F(H) with pe = 0;

(14) V is a bijection from Py (H) onto Pi(H).
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< (i). By Lemma 5, V(p) =g, € P(H)NF(H) for all p e P(H)NF(H) or V(p) = —qp €
P(H)NF(H) for all p e P(H) N F(H). In the first case for p,e € P(H) N F(H) with pe = 0,
we have that V(p) = ¢p, V(e) = qp, ¢ + ¢ = V(r + €) = ¢y, that is, V(r)V(e) = ¢,qg. = 0.
The case V(p) = —qp € P(H) N F(H) for all p € P(H) N F(H) is proved similarly.

Item (i7) directly follows from Lemma 5. >

< PROOF OF THEOREM 2. We suppose that V(P(H)NF(H)) C P(H) NF(H) (the case
(=V)(P(H)NF(H)) C P(H) N F(H) is proved by replacing V with (—=V)). Let

k
T = Z)\npn € F(H)hv Pn € 731(7'[), PnPm = 0,
n=1

n#m, 0\, €R, nm=1,... k.
Since V(pn) - V(pm) = 0, n # m (Corollary 1 (7)), it follows that

k k
V(*) =V ( > Aipn> =Y AV(pa) = V(2)?
n=1 n=1
and i i
Tr(V(2) = > MWTr(V(pn)) = Y An = Tr(z).
n=1

If pe,q, f € P1(H), V(p) =¢q, V(e) = f, then
2Tr(pe) = Tr(pe) + Tr(ep) = Tr((p +e€)* —p —e)
=Tr(V((p+e)?) —2=Tr(V(p+e)® —2="Te((g+ f)?) — 2 = 2Tx(qf).

Consequently, Tr(pe) = Tr(V (p)V (e)) for all p,e € P1(H). By |30, Ch. 3, §3.2, Theorem 3.2.8|
we obtain that there exists an unitary or anti-unitary operator u such that V' (p) = upu* for
all p € Py(H) . Thus V(x) = u*zu for all x € F(H)".

If (Cg,|| - |lcg) is a separable space then F(H)" is dense in (CL, | - |lcy). Consequently,
V(x) = u*zu (respectively, V(z) = —uzu*) for all € Ck.

If (Cg,| - |lcy) is a perfect Banach symmetric ideal, then V is o(Cg,Cj )-continuous
(see proof of Step 4 in Theorem 4). Since F(H)" is 0(C,Cj)-dense in (C, || - ||lc), it follows
that V(z) = u*zu (respectively, V(z) = —uzu*) for all x € C}.

In the case (=V)(P(H) N F(H)) € P(H) N F(H) we get that V(z) = —uazu® for all
zeCh >
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1. Introduction

As noted in the book [1] “Nonstandard methods of analysis in the modern sense consist

in attracting two different models of set theory—“‘standard” and “nonstandard” for the study
of specific mathematical objects and problems”. Currently, the two nonstandard methods are
most widely used in analysis—Robinson’s infinitesimal analysis and Boolean valued analysis,
each of which have become an independent area of analysis.

Application of the methods of mathematical logic for obtaining new results in pure

mathematics, started apparently with the article by A. I. Maltsev [2] in which a general
method was developed for obtaining local theorems of group theory. This method was based
on Maltsev Compactness Theorem proved in his PhD Thesis in 1936. Further penetration of
the methods of logic in various areas of mathematics, mainly in algebra, is associated with the

© 2019 Gordon, E. I.



26 Gordon, E. I.

development of model theory—a section of mathematical logic that studies algebraic structures
from the point of view of their description by first-order logical languages.

The beginning of application of the methods of mathematical logic in analysis is connected
with A. Robinson who made a great contribution to the development of model theory. Using
Maltsev Compactness Theorem, he constructed an extension of the standard model of analysis
which included a slightly modified version of the basic properties of the standard model, but
contained also infinitely large and infinitesimal numbers. In this new analysis, which Robinson
called the non-standard analysis, many intuitive mathematical formulations that go back to
Leibniz and later to Cauchy, such as, for example, the definition of limit: “lim,_,, f(z) =
L means that if z is infinitely close to a but = # a, then f(z), is infinitely close to L7,
received the status of rigorous mathematical statements. This made it possible to simplify
significantly the proofs of many theorems of standard analysis and even obtain new results
in standard mathematics using nonstandard analysis. After the first edition of Robinson’s
book [3] was published in 1966, many articles appeared in which nonstandard analysis was
used to obtain new results in various fields of standard mathematics, especially in functional
analysis, stochastic analysis and mathematical physics (see e.g. [4]). Robinson’s nonstandard
analysis is briefly discussed in Section 2.

The other of the nonstandard method of analysis, named by G. Takeuti “Boolean valued
analysis” originated from P. Cohen’s method of forcing®, which was developed to prove the
independence of the Continuum Hypothesis (CH). The forcing is a quite complicated method.
It requires knowledge not only of the foundations of mathematical logic, but also of the very
subtle and deep results in axiomatic set theory. It was impossible for a laymen to understand
the proof of independence of CH based on the forcing. At the same time, interest in the result
itself, marked with the Fields Prize, was very wide. This served as an incentive for D. Scott
and R. Solovay to develop a method of Boolean valued models [5, 6, 7|**. An excellent intuitive
explanation of the main ideas of this proof is contained in the article [5]. After reading this
article, one cannot fully understand the proof of the independence of CH, but it is quite
possible to understand its idea on the basis of Boolean valued models.

In the last lines of this article, the hope is expressed that the Boolean valued models
of the field of reals will find application in mathematics not only to prove independence,
but also by themselves. This hope was justified. Based on the theory of Boolean valued
models, the method of Boolean valued analysis was developed, which found applications in
various fields of mathematics. Applications to harmonic analysis and von Neumann algebras
are primarily related to G. Takeuti and M. Ozawa [9, 10|; and in the theory of vector lattices
to A. G. Kusraev and S. S. Kutateladze. See [1, 11, 12| and the references there. Quite
recently Boolean valued analysis found application in Mathematical Economics. See the paper
of J. M. Zapata in this issue of the VMJ. The history of origination of Boolean valued analysis
will be discussed in the forthcoming paper.

Boolean valued analysis is called nonstandard since it uses not two-valued logic, but one
in which truth values form a complete Boolean algebra. The truth of a sentence in such a
model means that its truth value is equal to the top of this Boolean algebra. Thus, the objects
that simulate R in Boolean models are significantly more complicated than R. The article [13]
shows that the class of Boolean valued fields R coincides with the class of universally complete
Kantorovich spaces. Roughly speaking, this allows us, to reduce many problems about complex
objects to problems about simpler objects.

* We use below simply forcing for the method of forcing as it is used in the majority of publications.
** It is mentioned in [8] that [6] is the preliminary version of [7]. However, the article [7] never appeared
in print, although it circulated as a preprint and was widely known.



Some remarks about nonstandard methods in analysis. 1 27

For the most important particular case of Boolean algebras with measure, this
characterization of Boolean valued models of R was actually obtained earlier in [5].

Evgeniy Alekseevich Gorin, who left us a year ago, once attending a seminar, where I
gave a talk on Boolean valued analysis, quite accurately characterized this method with his
inherent humor: “I understand now what you are doing. You are taking some kind of a theorem
about functionals, say something like spells over it and get a theorem about operators.”

Those who work in Boolean valued analysis usually do not use the forcing method for
the above reasons. There is one more reason. Forcing uses the standard models of ZF.
The existence of such a model (SM) cannot be proved in ZF itself by virtue of Godel’s
Incompleteness Theorem. For independence proofs the additional hypothesis about the
existence of an SM does not matter, because there is a method that allows to convert
a deduction using this hypothesis of a contradiction to a deduction of the same contradiction
without it. However, if some analysis theorem is proved under the assumption of the existence
of a SM, then generally speaking this does not mean that this theorem can be proved
without it. For example, the consistency of ZF can be proved in ZF+SM, but it cannot
be proved in ZF. There is no such problem in the Boolean valued analysis, since it does not
need any SM. Even independence proofs can be carried out in Boolean valued models without
resorting to standard models.

The present day books on Boolean valued models do not include even any survey of the
method of forcing. However, in my opinion, proofs by the method of forcing are more intuitive
than proofs by the method of Boolean valued models, especially in the case of independence
proofs. The reader can compare the proofs of independence of CH in the book [11], Section 9.5
and in Section 3.3 of this paper and decide for him/herself which one is more intuitive. CH
is a simple case. I think that the it would be very hard to implement a proof of Theorem &
below in the framework of Boolean valued models. At least I tried to do this, when I worked
on Theorem 11 below and understood that it is too hard for me. I am sure that this situation
may sometimes occur in Boolean valued analysis as well. That is why Section 3 of this paper
contains a survey of forcing.

2. A. Robinson’s Nonstandard Analysis

Recall some concepts and facts of model theory, on which the nonstandard analysis is
based.

Let o be a signature of a first order logical language L, and let M = (M, o) and M’ =
(M', o) be o-structures*.

DEFINITION 1. Let 2 : M — M’ be a monomorphism. Say that (M’,2) is an elementary
extension of M, if for every formula ¢(z1,...,z,) of L, and for every mq,...,m, € M one
has

ME p(my,...,my) <= M = o((mi),...,1(my,)). (1)
REMARK 1. In what follows we assume WLOG that ¢ is the identity monomorphism and
so M C M'.
Maltsev Compactness Theorem easily implies the following

Theorem 1. Fach structure M has an elementary extension of an arbitrary cardinality
< max(|o], Rp).

* This means that the basic functions and predicates in M and M’ are interpretations of the corresponding
symbols in the signature o. In what follows we use the same notations for the signature symbols and their
interpretations.
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Recall the definition of the superstructure S(X) over an arbitrary set X following [14] (see
also [15]). We assume that X contain all naturals.

DEFINITION 2. Put Sp(X) = X and for each n € N, n > 0, Sp(X) = Sp—1(X) U
P(Sp—1(X)). Then S(X) = J,~; Sn(X). Define the rank of x € X as follows. For 2 € Sy(X)
rank(z) =0, for n > 1 rank(z) = n, if x € S, (X) \ Sp-1(X).

The superstructure S(R) contains the mathematical objects that are used in the main areas
of mathematics— algebra, geometry, analysis, probability theory and others. For example, the
book [4] contains only objects from S(R) and its elementary extension, which, by the way, is
also a subfamily of S(R) (see below). The signature o of S(R) is the following one:*

o=(a,+,-,<,€). (2)

Here @ is a constant symbol, + and - are binary function symbols and < and € are binary
predicate symbols. The elements of rank O—real numbers are considered as individuals (not
sets). They are the only elements of S(R) that are not sets. For example rank(@) = 1 and in
the expressions x+y, -y, v < y, t € z we have rank(z) = rank(y) = 0 and rank(¢) < rank(z).

Practically any conventional mathematical statement can be formalized by an appropriate
formula of the language L,. Such a direct formalization is often quite long and difficult to
see even for relatively simple mathematical statements. To simplify it, various notations and
abbreviations are usually used.

The following abbreviation is generally accepted in all logical languages.

Let ¢(x) be a formula that contains a free variable x.

Nz f(z) :=3FaVy (p(z) A (p(y) — = =1y)).

In conventional language we read this formula of L, as “There exists a unique x such that
®(x)”, where ®(x) is a conventional statement about = whose formalization in L, is ¢(x).
DEFINITION 3. We say that an element A € S(R) is definable in the superstructure
S(R) if there exists a formula ¢(x) of L, with the only free variable z, such that S(R)
Iz o(x) A p(A).
If ¢ contains besides x free variables p1, ..., p,, then we say that A is defined in S(R) via
parameters p1,...pn, provided that

S(R) ):Vpl,,anl'x @(x,pl,,pn) (3)
and for all by,...,b, € S(R) we have
SR) E p(A,by,...,by). (4)

If ¢ is satisfies (3), then ¢ defines a function that assign to each n-tuple (by,...,0by)
the unique element A that satisfies (4). So, the formula ¢ after assigning an appropriate
notation can be added to the signature o as a function symbol.

For example, consider a formula ¢ (x, z1,...,x,) and let

o(X,z,x1,...,2p) = € X +— VX, z,21,...,2p). (5)

Then ¢ satisfies (4), and so it defines an n-ary function, that is denoted as X = {z :
Y(z,x1,...,2,)} exactly like in the conventional language.

* We assume that the symbol of equality = is an element of any logic language.
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In case, when 1 does not contain the variable x, the formula ¢ define the n-ary predicate
X(x1,...,2n), n = 0. In case when the truth domain of X is a set that belongs to S(R) we
write (z1,...x,) € X, identifying the predicate and its domain. We assign some notation to
this predicate and include it in the signature o as the set constant. Sometimes in this situation
we say for brevity that a function or a predicate is defined by the formula 1), not ¢.

EXAMPLE. 1. The formula Vy (y ¢ x A x # &) defines the unary predicate “z is a real”,
whose truth domain is the set of all reals R, so we include the constant R in the signature o.
Usually we use writing € R, not R(x). The truth domain of the predicate x ¢ R consists of
all sets in S(R). So it is not an element of S(R). Sometimes this predicate is denoted by Set.
Here writing Set(x) is preferable.

2. All Boolean operations on sets but complementation are obviously definable in L,. As it
was mentioned above S(R) is a set, thus S(R) \ z is a set for any set z € S(R). However,
this set is not an element of S(R), since it necessary contains elements of an arbitrarily large
rank. As in conventional mathematics, the complementation can be used, when some universe
U € S(R) is fixed and we deal only with its subsets.

3. The predicate x C y is defined by the formula V z (z €  — z € y). The operation P(y)
is defined by the formula P(y) = {z :  C y}

4. The definition of an ordered pair by Kuratowski:

(a,b) = {{a},{a, b}}

can be considered as a formula of L, written with the abbreviations introduced above. Using
the definition of an ordered pairs, we can usually formalize the definitions X XY, f : X — Y,
YX ete.

For the further examples of translations from the conventional language to the formal one
see Section 3 of Chapter I in [16] and Section 1 of Chapter 0 in [1].

Consider some proper elementary extension *S(R) of S(R). We use the canonical notations
for the elementary extension of S(R) in the nonstandard analysis. Here * : S(R) — *S(R)
is the monomorphism 2 of the Definition 1. The equivalence (1) is called in the nonstandard
analysis the Transfer principle.

DEFINITION 4. a) An element *z € *S(R), the image of z € S(R) under the
monomorphism *, is said to be standard. We say that y € *S(R) is standard (notation St(y)),
if 3z € S(R) such that y = *z.

b) The elements of *S(R) are called internal elements.

c¢) The noninternal sets that belong to S(*R) are called external sets.

d) The elements of *R are called hyperreal numbers or hyperreals.

In what follows V**z... stay for Vz(St(z) — ...) and F%z... for Jz(St(z) A ...)
respectively.

REMARK 2. Let us clarify the difference between *(S(R)), *S(R) and S(*R). The first
one consists of all standard elements, the second one is an elementary extension of S(R), i.e.
it consists of all internal elements, the third one contains all internal and external elements
of S(*R). So,

“(S(R)) C *S(R) C S(R). (6)

Both inclusions in (6) are proper. Notice firstly, that since the elementary extension of S(R)
is proper by definition, then *(R) # *R. Otherwise, it is easy to see that *(S(R)) = S(*R),
etc. We show now that there are internal sets that are nonstandard. Since there exist internal
elements o < B € *R\ *(R) and in S(R) it is true that for any < y € R there exists a set
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[, y]; then, by the Transfer Principle, the same statement is true in *S(R) for *R. Thus, [«, f]
is an internal set in *S(R), that is obviously nonstandard.
It is easy to prove the following

Proposition 1. If a linearly ordered field R is an arbitrary proper extension of R, then

1. There exits p € R \ R such that Vr € (0,00) CR 0 < |p| < r. Notation: p = 0.

2. For every 3 € R such that |3| < r for some r € R, there exists b € R such that 5—b =~ 0.
In this case we write 3 ~ b.

A simple proof of this proposition can be a good exercise for the students who start to
study a rigorous course of Analysis. It is just a proposition of standard mathematics. In *S(R)
we apply Proposition 1 to *R for R and to *(R) that is an isomorphic copy of R. Here the
following definition is used:

DEFINITION 5. a) If p~0, then p is said to be infinitesimal. The set My = {p € *R: p ~ 0}
is called the monad of 0.

b) An element Q € *R is said to be infinitely large if V5! r |Q| > 7.

c¢) An element 3 € *R is said to be limited, or bounded or finite, if 357 |3| < r. The set of
bounded elements is denoted by *Ry;,. According to Proposition 1 item 2, in this case there
exists a standard b such that b = (. This b is called the standard part or the shadow of 5 and
is denoted by °f.

Proposition 2. The monad My is an external set.

< Suppose that My is an internal set. Since it is bounded from above (e.g. by number 1),
it must have sup My = u. It is easy to see that both assumptions g ~ 0 and p % 0 lead
to contradiction. >

The notions defined in Definition 5 are not formulated in L, since in their formulation
the unary predicate St is present explicitly or implicitly. This predicate is not included in
the signature o. For the formalization of such statements we need to extend the signature o
by adding to it this predicate. Denote the extended signature o*!. The formulas in L, are
called external formulas, while the formulas of L, are called internal formulas. The Transfer
Principle is not applicable to external formulas, as we just saw in the proof of Proposition 2.

Mathematicians, who begin to study nonstandard analysis with the aim of applying it
in their research, often face the following difficulty. They make mistakes related just to the
application of the Transfer Principle to external sets. This is because the definitions of internal
and external sets (see Definition 4) are very nonconstructive and require a formalization habit,
which usually the mathematicians who work in geometry, ODEs and PDEs do not have. The
considerations of the previous paragraph imply the following sufficient condition for a set
to be internal (external): A set defined by a formula of the language L, is internal, while
a set defined by a formula of the language Lyst is external. This condition makes the difficulty
mentioned above somewhat easier.

Nevertheless, a certain difficulty in using nonstandard methods remained. The fact is
that the Maltsev Compactness Theorem, on which Theorem 1 is based, is a consequence
of Gddel’s Completeness Theorem, more precisely, on its generalization to signatures of an
arbitrary cardinality belonging to Maltsev. Many mathematicians do not like to use in their
research the results whose proofs they do not know, or at least do not even imagine the idea.
In order to be sure of the correctness of the results obtained using nonstandard analysis, such
mathematicians must study the principles of mathematical logic, at least up to Theorem 1
inclusively. This is a rather extensive material that usually is far away from their scientific
interests and does not correspond to their way of thinking. But even after studying the proof
of Theorem 1, such mathematicians will not feel completely satisfied, since the proof of this
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Theorem based on the Compactness Theorem is a pure proof of existence and does not give
any construction of elementary extension.

Fortunately, there is another proof of the existence of an elementary extension of an
arbitrary structure, in which this extension is constructed as an ultrapower of this structure.
This construction does not rely on Godel’s Completeness Theorem and does not require any
knowledge of mathematical logic besides the definition of a first-order language and the truth
of the formula of this language in its signature. It can be considered as a construction in the
conventional mathematics.

DEFINITION 6. 1) Let {M; : i € I} be a family of structures of a signature o and F be a
free ultrafilter on I. Then the ultraproduct of this family is the structure

HMi = (HMZ/ ~;,U> , where {m;} ~x {m}} = {i: m; =m}} € F. (7)
F i

Let f be a function symbol of the signature o. Consider the sequence {f; : M; — M}, where
fi is the interpretation of f in M,. Then the interpretation f~7 of f is defined as follows:

[F(m~7)=n~7 :={i: n; = fi(m;)} € F (8)

The definitions of interpretation of k-ary functional symbols for arbitrary k£ € N and k-ary
predicate symbols are similar.

2) If all M; = M for a certain o-structure M, then the ultraproduct defined in 1) is called
the ultrapower of M and is denoted M*. There exists a monomorphism j : M — M7 such
that j(m) = {m; : i € I}"~7, where m; =m for alli € I

Theorem 2 (Los). Let M = (M, o) be a structure of the signature o; F, a free ultrafilter
on aset I; p(x1,...,1,); a formula of L,, and py, = {mk}> € M7, where k = 1,...,n. Then

MT = o, ) = {i€T: M= p(ml,...,m}) e F.

Corollary 1. The structure (M7, j) is an elementary extension of M.
The elementary extension of S(R) is the bounded ultrapower of S(R), that is

SR = |J (Sa®)\ Sua(R)T).

neN

Corollary 1 is true for the bounded ultrapower. In what follows we keep the notation (*S(R),*)
for the ultrapower nonstandard extension of S(R), if an ultrafilter F is fixed.

We cannot say that at least one nonstandard extension built using an ultrafilter is
constructive, if only because the very existence of an ultrafilter cannot be proved without
the Axiom of Choice. However, this concept is widely used in conventional mathematics:
For example, recall the StoneCech compactification or the famous paper [18], which
essentially uses the construction of a nonstandard hull known to nonstandard analysis, to
which the author comes completely independent of nonstandard analysis and related to it
mathematical logic.

The internal sets in an ultraproduct nonstandard extension of S(R) have very clear
description: A set in S(R)f is internal if and only if it is an ultraproduct of a family of
sets {X; : 1 € I} C Si(R) for some k € N.

A hyperreal p € R” is limited, if p = {r; : i € I} is such that the exists r» € R such that
the set {i € I : |r;| < r} € F. Then we may assume that the set {r; : ¢ € I} is a bounded
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subset of R. The limit of a bounded function over free ultrafilter always exists and it is easy
to see, that the standard part of p
°p = limr;.
_F

Using the technique of ultraproducts allowed mathematicians to easily remake the results
obtained by nonstandard analysis into standard ones, without even going into the details of
the original nonstandard proofs. This led to a certain drop in interest in nonstandard analysis
and decrease in the number of publications and conferences related to nonstandard analysis.
I believe that the potential of nonstandard analysis is far from exhausted. The justification
of this point of view will be contained in another article.

3. Forcing and Independence Proofs

Another outstanding achievement of the mathematical logic of the 1960s was the proof of
independence of the Continuum Hypotheses (CH) and the Axiom of Choice (AC) by P. Cohen
and his development of the method of forcing for this and many other proofs of independence
of the axioms of set theory. This method was ideologically and technically very complex and
accessible for the specialists not only in mathematical logic, but also in its very special field—
the axiomatic set theory. We discuss briefly Cohen’s method. We deal here with the axiomatic
due to Zermelo and Fraenkel (ZF). If AC is included in ZF then this system of axiom is denoted
ZFC.

3.1. Axiom of constructivity. The consistency of CH. The consistency of CH with
ZFC and AC with ZF was proved by K. Gédel in the late 1930s of the last century. We assume
that the reader is aware of the axioms of ZF. However, we remind some notions and notations.
Recall that a set x is said to be transitive, if Vy € x z € y (2 € x).

A set « is said to be an ordinal (notation a € On), if it is linearly ordered by the
membership €. By the axiom of regularity € is a well-ordering of «.

The formula of ZF « € On is absolute with respect to any transitive set in the sense of
the following

DEFINITION 7. We say that a formula ¢(x) is absolute with respect to a set M, if for any
aeM

pla) «— M |= ¢(a). (9)

In this context = on the right hand side means that all quantifiers are restricted to M.
We use the notation @js for the formula that is obtained by restriction of all quantifiers in ¢
to M. If M is a set that is definable by a formula 1 (x) in the sense of (5), then all quantifiers
in ¢ are restricted to ¢ and the equivalence (9) means

ZFEVa(d(z) = (o) <= ou(r)). (10)

Obviously, if M is a transitive set and all quantifiers are of the form Yu € v, or Ju € v,
then ¢ is absolute with respect to M.

A cardinal is an ordinal that is not in one to one correspondence with any of its elements.
This definition is not absolute.

Indeed, there are such extensions of some models of set theory, in which ordinals are the
same but the scale of cardinals is compressed. This is achieved by adding to the original
model the bijective mapping of the ordinal representing a cardinal in the original model onto
an ordinal representing a smaller cardinal. This effect is called the collapse of the cardinals.
Exactly such an extension is used in the paper [19] discussed below.
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It can be deduced from the Axiom of Regularity that the class of all sets V can be
represented as follows:

V= U Vo, Voo=0, Vo1 =PV,), Vo= U Vg, if o is a limit ordinal. (11)
acOn B<a

It is easy to see that x € V,, can be written as a formula E(z,a) of ZF.

To prove the consistency of CH and AC, Gddel studied the class of all sets definable from
ordinals. He called such sets constructive and denoted by L. The class £ is defined similar to
(11):

DEFINITION 8.

L= U Lo, Lo=3, Loati =Paef(La), Lo= U L, if o is a limit ordinal.  (12)
acOn B<a

Here X € Pyer(Ly) if X is definable like in equivalence (5), but ¢ is a formula of ZF, with
all quantifiers restricted to L, and each x; is either an element of L, or L, itself.

Theorem 3 (Godel-1). 1. There exists a function F(x,«) definable in ZF, which
establishes a bijection between classes On and L. This function is absolute with respect to L.
2. L = ZF, which means that, if for any axiom ¢ of ZF one has ZF + ¢r.

In what follows we write x € L, for F(z,«a) and z € L for 3a € On z € L.
The absoluteness of the formula = € £ implies

Corollary 2. L[E=Vzx (z € L).

Theorem 3.2 together with Corollary 2 implies the consistency of the statement V (x € £)
with ZF. This gave Godel the basis to call it the Aziom of Constructivity: Every set is
constructive. This axiom is usually written in the form V = L

Theorem 4 (Godel-2). ZF+V =L+ AC+ CH.

The fact that ZF +V = L F AC follows immediately from Theorem 3.1. The proof of the
statement ZF +V = L+ CH is very subtle and is not discussed here. For the proofs of both
Godel Theorems see [20] or Chapter 10 of [21].

3.2. Standard Transitive Models. The natural way to prove the consistency of a certain
sentence ¢ with the axioms of ZF is to present a model M such that M | ZF'. If the class M
is definable by a formula ¢ (x), then it is called an inner model. The class L of constructive
sets is an inner model for V = L, AC and CH.

The first obstacle to proving the independence of these statements is the theorem that
there is no internal model, neither for V=L, nor for AC, nor for CH. See the Introduction
to Chapter IV of [22]. So, any proof of the consistency of negations of these statements by
presenting a standard model for each of them should be a pure existence proof. Such proof is
possible only if a model is a set.

We say that a pair (M, E) is a model of ZF, if M is a set, the binary relation E C M x M
is an interpretation of €, and (M, E) = ZF. Owing to the Godel Completeness Theorem the
existence of a model of ZF is equivalent to consistency of ZF. Thus, it cannot be proved in
ZF due to the Godel Incompleteness Theorem. The vast majority of mathematicians believe
in the consistence of ZF.

An example of a set model of ZF+V=L is the set (Lq, €), where § is an inaccessible
cardinal. Recall that a uncountable cardinal « is said to be inaccessible, if 1) it is regular
and 2) VA < a 2 < a.
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The model, in which the inclusion symbol is interpreted as standard membership € in V is
called a standard model. The conjecture about existence of a standard model of ZF and, thus,
the conjecture about existence of an inaccessible cardinal are not provable in ZF. Moreover,
they are even stronger, than the conjecture on consistency of ZF. However, there are some
natural conditions such that a model (M, F) of ZF satisfying them is isomorphic to a standard
model. In what follows we deal only with standard set-models of ZF either. It can be proved
also that each standard model of ZF has a countable transitive submodel. The proofs and
further discussion of the theorems mentioned in this paragraph can be found in the Chapter
IT of |22] or in Chapter 10 of [21]). The existence of a countable model is important for a proof
of independence of CH, since there does not exist an uncountable standard model of ZFC,
in which CH fails (see the Introduction to Chapter IV of [22]).

Since every standard transitive model M contains the set of all constructive sets in M
as a minimal submodel with the same ordinals, we can assume from the beginning that M
is a countable transitive model and M =V = L. It means that

M= La,

a<\

where A is the minimal countable ordinal that is not in M.

REMARK 3. Since for every a € On there exists a cardinal R, for every « € M N On,
M E 308 =R,. Since € M, (3 is countable, thus in V' [~ R,. This example illustrates the
mentioned above fact that the formula 5 = X, is not absolute.

3.3. Independence of V=L and CH. To obtain a model, where V' = L fails we have to
extend the model M by adding some G C P, where P € M, but G ¢ M. We have to consider
the minimal standard transitive model M[G] D M U {G}. This model consist of all elements
constructible from G.

DEFINITION 9. We say that a set x is constructible from a set G, if

ve |J La@),

aEOIl

where the definition of {£,[G] : « € On} is similar to the definition of (12), but £Ly[G] = {G}
In our case, M[G] is transitive, so the predicate x € L is absolute with respect to M[G].
Hence, M[G] N L = M; therefore, G is not constructive and M|[G] = V # L. However, not
for every G, that is a subset of a set P € M it is true that M[G] = ZFC.
We formulate here a sufficient condition for GG to have this property, which is the key point
of the forcing method. To the end of this subsection the model M is fixed.

DEFINITION 10. Let (P, <) € M be a partially ordered set (poset). If

1. Aset Q C Pisdensein P,if Vpe Pdge @ p<q.

2. Elements p,q € P are said to be compatible, if 3r € Pp <rAqg < r. If p and g are
incompatible, they are said to be disjoint.

3. We say that (P, <) is a Boolean-type set (BTS),

a) for every two disjoint p,g € PIr € Pp<rAq<r;

b) for all p,q € P such that p € g there exists r < ¢ that is incompatible with p.

REMARK 4. In P. Cohen’s approach to forcing an arbitrary poset P without a top is called
a set of forcing conditions. According to the Mac Neille Theorem (see [21]) for any poset (P, <)
that satisfies the condition 3b) of this definition there exist a complete Boolean algebra B and
an embedding ¢ : P — B that is an anti-monomorphism (p < g +— ¢(q) < ¢(p)), and ¢(P) is
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dense in B. Obviously B is defined uniquely up to isomorphism. It is called a Dedekind—Mac
Neille completion of P and denoted by RO(P). The mapping ¢ exists even if P does not satisfy
3b), but in this case it is an anti-homomorphism. Condition 3a) follows from the others and
from the Mac Neille theorem and is included only for convenience. See [23, §2.3], and [21,
Chapter 16] for proofs and details.

DEFINITION 11. A subset G C P is said to be M-generic if

1.Vp,ge GareGp<rAg<r;

2.if pe G, g <p, then q € G,

3. for every (Q C P, such that Q € M and @ is dense in P the intersection G N Q # <.

Theorem 5 (Cohen 1). If (P, <) € M is a Boolean-type set, then there exist an M -generic
set G C M, and for every such G, M|G] = ZFC +V # L
Proofs of existence of M-generic set and of the statement M[G] =V # L are very simple.
Since M is countable, it has only countably many dense subsets Pi,..., P,,.... So, there
exists a sequence p; < ... < p, < ..., such that p, € P, for alln € N. Let G, = {p € P :
p < pn}. Then G = |J G, is an M-generic set.
n

To prove that M[G] =V # L, it is enough to show that G ¢ M. This is an immediate
corollary of the following

Lemma 1. If an M-generic set G € M, then P\ G € M is dense.

The proof of this Lemma is an easy exercise.
The proof of the statement M[G] = ZFC, which belongs to P. Cohen [22] is very
complicated and technical. It is not discussed here.

DEFINITION 12. An extension M[G] of G, where G is an M-generic set, is called a generic
extension of M.

Definitions 10 and 11 are modifications of the general definitions of a set of forcing
conditions and generic set in Section 7 of Chapter 4 in [22|. These definitions involve the
partially ordered set U of forcing conditions and the set S of all sentences (formulas without
free variables) of the language of ZF extended by adding to the signature the constant symbols
for all constructible sets and for a generic set G. Nothe that S € M. Also the binary relation
|- C U x S is defined by induction. The entry p|| — ¢ reads like p forces ¢. This relation is
crucial for the proof of M[G] = ZFC'. In the paper [19] R. Solovay introduced almost the
same Definition (I.3) of M-generic sets as Definition 11, which he, keeping in mind to use
Boolean valued models, called M-generic filters. The insignificant difference is that Solovay
used arbitrary rather than Boolean-type posets.

The concept of an M-generic set and its properties can be considered as definitions and
theorems of ZF, if we assume that M is an arbitrary countable family of dense subsets of P.
The proof of the existence of an M-generic set and that this set does not belong to M carry over
to this case without change. Below the notation X is used for a countable family in ZF, since
the notation M is fixed for the countable standard transitive model ZF + V = L throughout
the entire Section 3.

Given an infinite set I" put

Pl = {f: f is a function, dom(f) € P, range(f) C {0, 1}}.

We start with considerations in ZF. Put for p, ¢ and p < ¢ := graph(p) C graph(q). Let X
be a countable family of dense subsets of P''. It is easy to see that (P, <) is a Boolean type
poset and if G is an X-generic set, then G is a linearly ordered subset of P'. Let f[G] = |G,
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then f[G]:T — {0,1}. Consider the set C(I') = {0,1}!" endowed with Tychonoff’s topology.
This a compact set. For I' = N this is the Cantor’s continuum.

Let O, = {f €: graph(p) C graph(f)}. Then the family 7(I') = {O, : p € P'} is a
base of a topology of C(T'). For X C P let O(X) = ,cx Op. Obviously, if X is dense, then
O(X) is dense in C in the sense of Tychonofl’s topology. So its complement is nowhere dense
and, thus the intersection (J{O(X) : X € X'} is a comeager set. Elements of this set we call
X -generic. Since, every function f € C(T") is a characteristic functions of a subset of I" or, in
case of I' = N it can be regarded as a binary fraction, so we can speak about X-generic subsets
of I' or about X-generic reals. The following proposition follows easily from definitions.

Proposition 3. Any f € C(T") is X-generic if and only if f = f[G] for some X-generic
set G.

Denote the bottom and the top of any Boolean algebra by 0 and 1 respectively. Let
B = {0,1}. Then the Boolean algebra 7 (I') has the independent system of generators {B, :
v € P'}. Here B, = {0,,0,}, where dom(p) = dom(q) = {7},p(y) = 0, ¢(y) = 1 is
isomorphic to B. In this case we write 7(I') = [[,cp By and say that 7 (I') is a free product
of I copies of B.

Obviously the mapping p — O, is an inverse isomorphism of posets Pt and T(T) (p <
q <— Oy C Op). The poset T(I') is the Boolean algebra of clopen sets of C(I"). Its Dedekind-
MacNeille (DM) completion (|23, §2.3], and [21, Ch.16|) is the quotient algebra of the o-
algebra of Borel sets of C(I') by the ideal of meager sets |23, §2.4(2)|. In what follows we
denote it by B(I') and in case when I" = N, simply by B.

All facts about Boolean algebras used below are taken from the book [23].

Proposition 4. The algebra T (I') and, thus, the algebra B(I") satisfy the countable chain
condition: any subset of each of them that consists of pairwise disjoint elements is at most
countable.

See [11, §9.5(5)], for a proof. Assume that |I'| = X3 and 282 = 83 (GCH). Then

yel’

Ny = (2“0)N2 . (13)

So, B(T') is isomorphic to (B)%3. This algebra includes as a dense subalgebra the algebra
T (R3) that is the free product of Ry copies of the algebra T(N) = T(Xg). A similar algebra
was used by P. Cohen in the proof of independence of CH as a poset of forcing conditions.

Let’s return to our standard transitive model M of ZFC+V=L to present the main ideas of
this proof that is based on the original forcing, with improvements by Solovay [19], Section 2.
Another proof of this theorem, which uses only Boolean valued models is contained in the
book [11, 9.5].

Denote by wy € M (k = 1,2,3) a countable ordinal in M such that M = w; = N and
let G be an M-generic filter on T (w3). Since (13) holds in M, we have in M:

T(ws) = [[ Talwo) = T. (14)

A<ws

where Ty (wp) is the Ath copy of T (wg). The following theorem (see e.g. [21]) is widely used
in forcing.

Theorem 6 (Absoluteness of cardinals). If a poset P € M satisfies the countable chain
conditions (see Proposition 4), and G is an M-generic set, then the cardinals in M and in M|T]
are the same.

Theorem 7 (Cohen 2). If G C T is an M-generic set, then M[G] = 2“° > wy.
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By Theorem 6 M|G] = wi, = Rj. Notice, that (14) may not be valid in M[G], since the
definition of P(X) is not absolute. However, the right hand side of this equality is absolute. It
is easy to see that GN7Ty(wo) = G, is an M-generic set on Ty (wo) (see [19, §2|). So, the subset
f(Gx) = fn € N is M-generic. The mapping ® : wy — 2% such that ®(\) = f\ is absolutely
definable from G and elements of M, so ® € M|G]. It is easy to see that ® is injective. Indeed,
if If ) = ¢, A # u, then it belongs to the diagonal of ({O, 1}N)2 and (fy, f,) is M-generic
with respect to the M-generic set Ty(wp)- T, (wo) NG. This is impossible, since the complement
of the diagonal is a dense open set. Now M |G| = ~CH follows from the obvious inequalities:

1B (w1)] = w1 < wo = |Bws)| < 2°. >

3.4. Solovay’s forcing. Random numbers. There is another proof of independence
of CH, that starts from the same Boolean algebra of forcing conditions 7 (I"). For any set T,
the product measure p is defined on the Boolean algebra 7 (I') of clopen sets of the compact
space {0,1}" by the formula u(0,) = 279m?l. This measure is extended to a o-additive
measure on the o-algebra B of all Borel sets. Let B,(I') = B/{A € B : u(A) = 0}. This is
a complete Boolean algebra with strictly positive completely additive measure that satisfies
countable chain condition. The algebra B, (I') is a completion of 7(I') with respect to the
metric p(A1, A2) = u(A;A Ag). This completion is not isomorphic to the Dedekind—MacNeille
completion and we cannot use the algebra T (I") for the set of forcing conditions, since 7 (I")
is not orderly dense in B, (I"). In this case we must use the set B, (I") \ {0} itself as the set of
forcing conditions. In order to do so, we have to make sure that this set is absolute. This is
true for the case of |I'| = Wy. So, as above put I' = N. Since 7 (N) is countable and is defined
by an absolute formula, the set of all Borel subsets of {0,1}" has cardinality 2. So, that
they can be coded by elements of {0, 1}Y. Moreover, this coding is absolute. If Apg is a Borel
set coded by B € {0,1}, then « € Ag, a ¢ Ag, A, C Ag, u(Ag) = 0, etc. are absolute. See
Section II of [19] for details. The crucial role for all absoluteness proofs of theorems about
Borel coding plays the following.

Lemma 2 (Shoenfield). Every formula ZF of the form 3yV xz p(z,y, c¢) such that x and ¢
range over NV (equivalently over {0,1}) and all quantifiers in ¢ are of the form ¥n € N or
dn € N is absolute with respect to any transitive model.

Let M be the same model as above and D \ {0} is the set of forcing conditions, where
D € M is an arbitrary complete Boolean algebra. Then G C D is an M-generic set if and only
if G is an ultrafilter on D and for any set E C G, E € M on has A\ E € M [21]|. An M-generic
set in a complete Boolean algebra is said to be an M-generic filter.

The analog of M-generic elements (functions, sets, numbers) of the previous subsection
are M-random elements. Consider the algebra B,,. Given a Borel set Ag C {0, 1}, denote by
[Ag] its equivalence class.

DEFINITION 13. We say that a function f € {0,1}" is M-random if f € Ag, B € M such
that [Ag] =1 (i.e. u(Ag) =1). In other words f is M-random, if it avoids every Borel set of
measure zero in M.

Proposition 5. If f is M-random, if and only if {[Ag] : B € M, f € Ag} is an M-generic
filter.

Corollary 3. If G is an M-generic filter in B,,, then almost all elements of {0, 1} in M[G]
are M-random.

Let Bu(k) = [Iy.,. By, where & is a cardinal. Corollary 3 is true for £ = wp. This is
obvious, since w% = wy, and the results about coding the of Borel sets are true for this case.
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Corollary is not true for the Boolean algebra B, (x) with uncountable &, though it also
satisfies the countable chains condition. The proof of the fact that M[G] = ~CH, where G
is an M-generic filter in B, (w3) repeats the proof of this result for algebra 14 almost without
changes.

3.5. Solovay’s results. The most impressive independence results after P. Cohen were
obtained by R. Solovay [19] and by R. Solovay and S. Tennenbaum [24]. In the first of them
the following two theorems were proved.

Theorem 8 [19, Theorem 2|. If the existence of an inaccessible cardinal is consistent with
ZFC, then there exists a model of ZF+DC,* in which every set of reals is Lebesgue measurable,
has the Baire property, and either is at most countable or contains a perfect subset.

This theorem follows from

Theorem 9 [19, Theorem 1|. If the existence of an inaccessible cardinal is consistent with
ZFC, then there exists a model of ZFC, in which all three statements of the previous Theorem
hold for the class of sets definable from a sequence of ordinals.

The class of sets definable from a sequence of ordinals is very big and important. For
example it includes all projective sets. There were two long standing problems in descriptive set
theory. About a century ago Suslin constructed an example of a set that is a continuous image
of a Borel set, but is not a Borel set. He called such sets A-sets.*™ P.S. Aleksandroff proved
that every uncountable Borel set contains a perfect subset and, thus, has the cardinality of
continuum. This implied that every A-set has a perfect subset. In attempts to prove CH N. N.
Luzin the teacher of Aleksandroff and Suslin suggested to study the hierarchy: A-sets, their
complements (CA-sets), the continuous images of CA-sets (PCA-sets), etc. Luzin showed
that at each stage of this hierarchy some new sets appear. The sets of this hierarchy are
called projective sets. They are studied in descriptive set theory. The first questions about
projective set were about cardinality, Lebesgue measurability and Baire property of these
sets. The difficulties started at the very first steps stages. It was known that A-sets and,
thus, C'A-sets are Lebesgue measurable, but the problem of cardinality of C'A-sets (does
each uncountable set contain perfect subsets?) and the problem of measurability of PC A-sets
remained open. In [20] Godel announced that V' = L implies the existence of an uncountable
C A-set without a perfect subset and of a nonmeasurable PC A-set. He did not publish a proof
of these statements. They were proved later by P. S. Novikov. Thus, from the results of [19, 25]
followed the independence of the problems of cardinality and Lebesgue measurability for all
projective sets followed, modulo, of course, the hypothesis of an inaccessible cardinal. That is
why the following problem formulated in [19] was so important.

Is it possible to eliminate the assumption about inaccessible cardinals from the statements
of this theorem, concerning the Baire property and Lebesque measurability 7***

This problem was solved by S. Shelah [26] who proved that the elimination is possible for
the Baire property but impossible for the Lebesgue measurability.

In his proof Solovay used the model M[G], where G is an M-generic filter in the (Rg, Q2)-
algebra Lévy (see Model VI in Chapter 20 of [21]), where M = € is an inaccessible cardinal.
This algebra is the Dedekind—MacNeille completion of the following absolute set of forcing
conditions

P= {p: p C {{a,n,B): B,a <), |p| <w0}}.

* DC—the axiom of dependent choice.

** Now they are called Suslin’s sets.

*** The impossibility of removing this assumption for the statement concerning perfect subsets follows
from the earlier paper of R. Solovay [25].
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It is easy to see that, if G N P is an M-generic set, then | JG consists of bijections of wy on
each infinite ordinal @ € Q. Thus, M[G] = Q = 8;.
The following proposition is needed in the future discussion.

Proposition 6. Let s € M[G] be a countable sequence of ordinals. Then the following
hold:

1) Almost all real numbers in M[G] are M [s]-random.

2) There exists M|s]-generic set H C P such that M[G] = M|s|[H].

The inaccessible cardinal is crucial for the Item 1 of this Proposition.

Without the hypothesis of the existence of inaccessible cardinal a weaker version of the
Solovay’s Theorem 1 was proved by G. Saks [8].

Theorem 10. The existence of an extension of the Lebesgue measure to an invariant
o-additive measure on all sets definable from countable sequences of ordinals is consistent
with ZF+DC.

Notice that the simplest and most known example of a non-measurable set—the Vitali set
is non-measurable with respect to any extension of the Lebesgue measure that satisfies the
conditions of Theorem 10.

The corresponding version of Solovay’s Theorem 2 was not even formulated in [8] and it
is not even clear whether it can be proved on the way used in [8].

This theorem was proved in my PhD thesis. The result was announced in the article [13].
The detailed proofs of more general versions of both Solovay’s Theorems are published in my
PhD thesis and in a preprint [27] deposited in the VINITI (All Union Institute of the Science
and Technology Information):

Theorem 11. Let a be an arbitrary ordinal definable in ZF. Denote by Base(X, ) and
Ext(X, ) the statements

1. “X is a o-compact group with the base of topology of cardinality 57;

2. “In a o-compact group X the left Haar measure can be extended to a left invariant
o-additive measure defined on all subsets of X definable by a (-sequence of ordinals”
respectively. Then the following proposition is consistent with ZFC:

VXV B <N, < |R| (Base(X,p) — Ext(X,3))

Theorem 12. Let « be an arbitrary ordinal definable in ZF. Denote by Base(X, ) and
Ext/(X, 3) the statements

1. “X is a o-compact group with the base of topology of cardinality B”;

2. “In a o-compact group X the left Haar measure can be extended to a left invariant
o-additive measure on all subsets of X”
respectively. Then the following proposition is consistent with ZF{AD+ACjs:

VXVB <R, <|R| (Base(X,3) — Ext(X, ),

where ACj3 is a the Axiom of Choice for a family of cardinality (3.

Both Solovey’s theorems almost automatically carry over to the case of Haar measures on
locally compact separable groups. In the case of non-separable groups, some problems arise
with the absolute coding of Borel sets, due to the fact that the Schonfield Absolute Lemma
holds only for countable sequences of positive integers. In the proofs of Theorems 11 and 12
these difficulties are overcome.

The independence of Suslin’s hypothesis and Martin’s Axiom were proved in [24]. This
paper was also very important for the Boolean valued analysis, since the iterated forcing and
the technique of ascents and descents were introduced there.
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Amnnoranus. B sToit n mociieyroreit crarbsix 00CYy»KIAIOTCs J1Ba HanboJee W3BECTHBIX HECTaHIaPTHBIX
METOJIa MaTeMaTUIEeCKOrO aHaIN3a — NHPUHATE3NMAJIbHBIA anaan3 A. Poburcona un 6y/IeBO3HAYHbBIN aHAINS,
3aTparmBaeTCsl UCTOPUSI WX BOSHUKHOBEHWS, OOIIUE YePThI U Pa3/INYusl, IPUIOKEHUs U TIEPCIEKTUBLI. B 3T0it
CTaThe CONEPIKUTCS 0030p MH(MUHUTUINMAIHLHOIO AHAJIN3a U METO/Ia BhIHY K/ /1eHusl. V3102keHne paccanTano Ha
quTaTeNs 3HAKOMOI'O JIUIIL C CAMBIMUA HAYaJIbHBIMU IIOHSATUSIMU MATEMATUYECKON JIOTMKH — $S3BIKOM JIOTUKU
[IpeuKaToB 1-ro mopsigka u ero mHTepuperarusamMu. 2KenareJbHO UMETh TaK»Ke HEKOTOPOEe IIPEJICTABJIEHNE O
dOpMaIbHBIX JT0KAa3aTeIbCTBAX M akcuoMaruke Teopun MHOXKecTB llepmesro — @penkess. [Ipu nznoxennn
MHGUHATE3NMAJIBLHOIO aHAJIM3a 0C000e BHUMAHUE Y/IeJs1eTcst (pOpMaIn3aliiy PeJIOXKEHU OOBITHON MaTeMa-
THKH B sI3bIKE IIEPBOI'0 ITOPsiJIKa JJIsl CYyIepCcTpyKTyphl. V30kenne Mmerona dpopcuHra peiBapsercs KPaTKuM
o63opoMm pesyisbraTta K. I'émesnst o coBMecTHMOCTH aKCHOMBI BBIOOpA M MMIOTE3bI KOHTUHYYMa ¢ aKCHOMATHKOMN
Hepmesio — Ppenkens. Crepyomas cTarbs Oy1eT TOCBIEHa, OyJIEBO3HAYHBIM MOJIEIAM U OyJI€BO3HATHOMY
ananusy. Ocoboe BHUMaHUE OYIET y/I€JIEHO NCTOPUN X BO3HUKHOBEHMSI.
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Annoranusi. Onucanbl OCHOBHBIE CBOHCTBa OTHOIIEHUI apXWMeIOBON 9KBHBAJEHTHOCTHA U MaKOPHUpPYe-
MOCTH B JIMHEIHO YIIOPsI0YEHHOM BEKTOPHOM IIPOCTPAHCTBE. BBEJEHO U NCCIIeI0BAHO TTOHATHE (IIPEJT)JIEK-
cukorpaduIecKoil CTPYKTYpbI Ha BEKTOPHOM IIPOCTpaHCTBe. JIekcumkorpaduieckas CTpyKTypa IpeacTaB-
JisteT coboi JBONCTBEHHOCTH MEXK/Iy BEKTOPaAMM M TOYKAMHM, IIOCPEJICTBOM KOTOPOil abCTPaKTHOE YIIOpsi-
JIOUEHHOEe BEKTOPHOE IIPOCTPAHCTBO PEAJIN3yeTCsl B BUJIe N30MOP(MHOro eMy IPOCTPAHCTBA BEIIECTBEHHBIX
dyHKIMA, CHaAGXKEHHOrO JIEKCUKOrpadUIeCKUM IOPSIAKOM. BBeeHb! moHsaTus hyHKIMOHAILHON 1 H6a3nc-
HOI1 JIEKCHKOIPaUIECKON CTPYKTYPBI. ¥ TOYHEHA B3aMMOCBSI3b MEXK/1y YIOPsIOUYE€HHBIM BEKTOPHBIM IIPO-
CTPaHCTBOM M €ro OyHKI[MOHAJIBHBIM JIeKCHKorpaduiecknM npesacrapienueM. [Ipuseneno HoBoe mokasa-
TEJILCTBO TeOpeMbl 06 M30MOPGHOM BJIOYKEHHUHU JIIOO0T0 JIMHEHHO yIOPSIAOYEHHOIO BEKTOPHOTO IIPOCTPAaH-
CTBa B JIEKCUKOIDa(UIECKHU YIIOPsI0YEHHOE IPOCTPAHCTBO BEIECTBEHHBIX (DYHKIMN C BIIOJIHE YIIOPSIIO-
YeHHBIMHU HOocuTessiMu. Ilosryden Kpurepnii IIIOTHOCTH MaKCHMAJIBHOI'O KOHYCA OTHOCHTEJIHLHO CHJIbHEN-
IIeil JIOKaJIBHO BBIIYKJION Tomosioruu. ba3ucHble MaKCHMaJ/IbHbIE KOHYCHI OIICAaHbl B TEDMIHAX MHOXKECTB,
COCTOSAIIUX U3 IONapPHO HEIKBUBAJIEHTHBIX BEKTOPOB. OXapaKTepu30BaH KJIACC BEKTOPHBIX IIPOCTPAHCTB,
B KOTOPBIX CYHIECTBYIOT HeOa3MCHBbIE MAKCHMAJIbHBIE KOHYCHI.

KuroueBbie ciioBa: MaKCUMAaJIbHBIA KOHYC, BCIOJY TJIOTHBI KOHYC, JTUHEHHO YIOPSIIOYEHHOE BEKTOD-
HOE MIPOCTPAHCTBO, APXUME0Ba IKBUBAJIEHTHOCTh, aPXUMEJI0BA MAYKOPUPYEMOCTh, JIEKCUKOrpaduIecKuit
MopsiJIoK, 6a3uc ['aMesisi, JIOKAJIBLHO BBITYKJIOE ITPOCTPAHCTBO.
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1. BBenenue

[TogmuOXKecTBO K BEKTOPHOIO MPOCTPAHCTBA Ha I mojeM R BeleCTBEeHHBIX UNCes Ha3bl-
Baercst konycom, ecim K + K C K, aK C K mis Beex a € RT, rie R :={a € R: a > 0},

#PaboTa BEHIITOTHEHA IPU MOJIEPKKE IPOrPaMMEI (DYHIAMEHTAILHEIX HaydHEIX uccaegosammii CO PAH
NeI.1.2, mpoekr Ne(0314-2019-0005.
© 2019 T'yrman A. E., Emennsauenkos 1. A.
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u KN (—K)={0}. Nabivu cioBamu, KOHYC — 9TO HEILYCTOE MHOXKECTBO, 3aMKHYTOE OTHOCH-
TeJIbHO JIMHEIHBIX KOMOMHAIIUN (i1 T1 + - -+ + Qp &y C MOJIOKUTETBHBIMU KO(DDUITMEHTAMI (;
U cojieprkailriee He Hojiee 0JTHOTO BEKTOpA M3 KaXK/JIO# Maphl T, —.

[MonsiTme KOHyCa TECHO B3AMMOCBI3AHO C IMOHITHEM YNopAJoOueHH020 BEKMOPHO20 NPO-
CMParcmea — BEIIECTBEHHOIO0 BEKTOPHOTO IPOCTpaHcTBa X, CHAOXKEHHOIO TAKUM OTHOIIIE-
HUEM TOopsiaKa <, 9TO Jyist JoObIX T,y,2 € X na € Rt us o < y corenyer v + 2 < y + 2
u ar < ay. A nmenno, eciin (X, <) — yHOpsIJIOU€HHOE BEKTOPHOE HPOCTPAHCTBO, TO MHO-
xkecrBo X1 = {x € X : x > 0} aBisercs konycom; u zHaobopor: ecau K C X — KOHyC u
r<gy & y—x€ K (x,y € X), 10 (X,<x) — YUODPSIIOUEHHOE BEKTOPHOE IIPOCTPAHCTBO
nu X+ = K (cm., nanpumep, [1, 3.2]).

N3 kaccuyeckoit Teopembl Xana — Banaxa HemocpeCTBEHHO CJeIyeT, UTO BCIKUH KO-
HyC, SBJISIONHiics HarpaduKoM CcyOJMHERHOTO (DYHKIIMOHAJIA, UMEET OIOPHYI0 T'MIIepPILIOC-
KOCTb. B 9T0it cBsI3u OBLIO ObI €CTECTBEHHO OXKUJIAThL, UTO JIIOOOI KOHYC B BENIECTBEHHOM
BEKTODHOM IMPOCTpPaHCTBE X JICXKUT B HEKOTOPOM IOJIYIIPOCTPAHCTBE, T. €. BO MHOXKECTBE BU-
na {z € X : f(x) >0}, me 0 # f € X#. (3nech u nmke X7 — BEKTOPHOE IPOCTPAHCTEO
JIMHEHHBIX (DYHKIMOHATIOB Ha X € MOTOYEYHBIME JIMHEHHBIME oreparusiMu.) Tem He MeHee,
510 He Tak. Harpumep, ecin K = {x € LY(R) : 2 > 0} — KOHyC HOJIOKUTETLHBIX 3/1eMEHTOB
npoctpancta X = LY(R) K/1accoB SKBUBATIEHTHOCTH H3MEPUMBIX 110 JleGery BerecTBeHHBIX
dbyHKINNA, TO HE CYIIECTBYeT HHU OJHOIO IOJIOKUTEJbHOro Ha K JimHeiiHOro (yHKIMOHATA
0# f & X% (cm. [2, §5]). B wacrnoctn, K He JIeKUT HE B KaKOM IOJIYIIPOCTPAHCTBE M,
6oJiee TOTO, HE OTJIEJISIETCS HU OT OJIHOM TOYKH X, T. €. SBJISETCH BCIOAY IJIOTHBIM B CAMOM
CUJIBHOM CMBICJI€ — OTHOCUTEJILHO CUJIbHEHIell JIOKaJIbHO BBIILYKJIONH TOIIOJIOIUU (B KOTOPOH
BCe JHeiinbie ByHKIHonaIbl Hernpeprisub). Onucannsiii konyc K C LO(R) — «rurantckuits,
HO HE MaKCHMAJTbHBII, OH MOYKET OBITh yBesideH Jio eme 6ombitero konyca K C K C LY(R).

Konyc K B BekTOpHOM mpocTpaHcTBe X HA3BIBACTCH MAKCUMAALHOM, eciin B X HE Cy-
IECTBYET JIPYroro KOHyca, cojepxkaiiero K, T. e. K sIBIsIeTCS MAKCHUMAJBbHBIM 3JIEMEHTOM
YIOPSIIOYEHHOTO TI0 BKJIIOUYEHUIO MHOXKECTBA BCEX KOHYCOB B X.

Cuenyrorue cBoiictBa KoHyca K B BeKTOpHOM 1IpOcTpaHCTBEe X DABHOCHJ/IBHBI:

(a) K — MakcuMaJIbHbBIH KOHYC;

(b) (X, <) — smHEIHO y1IOpsi/Io9eHHOe BEKTOPHOE 1IpocTpaHcTBo, T. e. (Vx,y € X)(z < ky

i y < 7);

(¢c) Ve e X)(x € K mm —x € K).

C momorpio jlemMbl LlopHa Jierko mokazarh, 9To 000t KOHYC MOYKET OBITh YBEJIUUIECH JI0
MakcuMaJsbHoro. Bosiee Toro, jys oboro konyca K C X u jiroO0ro BBITYKJIONO MHOXKECTBA
C C X, me nepecexaomerocsi ¢ K, cymecTByer MakcuMajbHbIH Konyc K C X, KOTOpbIit
comepxkut K u He nepecekaercs ¢ C.

IIpuMepOM MaKCHMAILHOTO KOHYCA CITyKHT CJIEIyIONIee HOIMHOXKECTBO pocTpancTsa RY
Beex nocsenoBarenbrocreii z: N — R (3nece N = {1,2,...} — MHOXKeCcTBO HaTypaIbHBIX
quces1) ¢ KoHedHbIME HocuTessivu [z] := {n € N : z(n) # 0}:

{z € RY\{0} : z(max[z]) > 0} U {0}.

DTOT MaKCHMATBHLIT KOHYC, COCTOSIII 3 TexX TocaeosarebaocTeit © € RY | weit moces-
Hufl HeHyaesoil wien x(max[r]) monoskuTesen, Beroay mioten B RY oTHOCHTEMBHO CHITLHEIH-
el JIOKaJIbHO BBIMYKJIOi Tonosorun (cMm. |3, it 11, §5]). Anamornumerii konyc

{z e RN\ {0} : z(min[z]) > 0} u{0}

TOXKE MAKCUMaJIeH, HO He sIBJISIETCsI BCIOJLY IIJIOTHBIM, IOCKOJIBKY COJIEPKHUTCS B LOJIYIPOCTPAH-
cree {z € R : z(1) > 0}.
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[IpuBesnennble pakTbl MOTHBUPYIOT MOCTAHOBKY CJIEYIOIINX 3a/1ad.

(1) BbisicHuTb, B KAKUX CJIydasix Jjisi MAKCHMAJBHOIO KOHyca K B BEKTOPHOM IPOCTPaH-
crBe X cyIiecTByer JIMHENRHO ynopsijodennsblii 6asuc lamvens (B, <), obecneuansaromuii mpeJi-
cTaBJIeHIEe

K = {z € X\{0} : z5(min[zz]) > 0} U {0},

e [z5] := {b € B : x5(b) # 0} — nocurens cemeiictsa x5 € RE kosddumumenton paznoxke-
uust ), p ()b Bexropa x 1o Gasucy B. (Taxoit xomyc K Gyjem Ha3pIBaThH OA3UCHDBIM. )

(2) OxapakTepn30BaTh BEKTOPHBIE IPOCTPAHCTBA, B KOTOPHIX BCE MAKCHMAJIbHBIE KOHYCDI
stBJistiorcst GaszucHbiMU. (OueBHIHO, K HUM OTHOCSITCS JIIOObIe KOHEUHOMEPHBIE IIPOCTPAHCTBA. )

(3) IIpusecTu obIMe HPUMEPHI U OIKCATH CTPYKTYPY JIFOObIX, B TOM 4HC/Ie HEOA3UCHBIX,
MAKCHMAaJIbHBIX KOHYCOB.

(4) BolsicHUTD, IPU KAKUX YCJIOBUSIX MAKCUMAJIbHBIN KOHYC He JIEXKUT HU B OJTHOM IIOJIY PO~
CTPAHCTBE, T. €. BCIOJY IJIOTEH OTHOCHUTEJBHO CHJIBHEHIell JTOKAILHO BBITYKJIOH TOIOJIOTUH.

JaHHasi cTaThs MOCBSAIIEHA PEIIEHUIO TTEPEIUCTIEHHBIX 381a4.

B kavecrBe perennst 3azaqu (1) mpejyioxkeH Kpurepuili 6a3uCHOCTH KOHyCa B TEPMHUHAX
JIUCKPETHBIX MHOYXKECTB — COBOKYITHOCTEH BEKTOPOB, CPEJI KOTOPBIX HET apXUMEJOBO SKBU-
BaJIeHTHBIX (cM. 4.2-4.4).

UcuepnwiBatormuii orBer Ha Bompoc (2) jgaer Teopema 4.7, coriacHO KOTOpPOil Heba3uCHbIE
MaKCHUMAJIbHbIE KOHYChI CYIECTBYIOT B BEKTOPHBIX IIPOCTPAHCTBAX HECUYETHON pa3MEpHOCTH,
¥ TOJBKO B HUX.

Bajada (3) TecHO cBsizaHa ¢ TeopeMoii XaHa 0 BIOKEHUN — OJHUM u3 Haubosiee rryboKux
PEe3yJIbTATOB TEOPHUU YIOPSIOUCHHBIX T'PYII, YTBEPKIAIONINM, UTO BCIKas JTUHEHHO yIIOpSs-
JI0YeHHasI IPYyIITa H30MOP(MHO BKIAIBIBACTCA B JIEKCUKOTIpadUIecKoe Ipou3BeieHne AeficTBH-
TesibHbIX Ipym [4, . IV, reopema 16]|. I3BecTen n MeHee rpoMO3Kuil aHAJIOD 9TOi TeOpeMbl
JUIsL cJlydasi JINHEIHO yTOpsiIOYeHHBIX BEKTOPHBIX MPOCTPAHCTB |5, Teopema 3.1|, KOTODBIii
dakruuecku jaer orser Ha Bompoc (3). B maHHOl cTarbe Mbl, B YACTHOCTHU, HOIBITAINCH I1e-
PEOCMBICTIUTD U CYIIECTBEHHO YIIPOCTUTH UMEIOIIHMECH ITOIX0/IbI, ITepeBe/id NX Ha SA3bIK JICKCHU-
Korpadguueckux u npejiiekcukorpadudeckux crpykryp (cum. §3). JlokazaresbCcTBO OCHOBHOI
JeMMBbI 3.9, MJIeiiHO U TeXHUYECKH OJIM3KOe COJEPKAHUIO CTAThU [5|, HA HAII B3MJIsLJ, CTAJIO
€CJIN He 3JEMEHTAPHBIM, TO [I0 MEHBINeH Mepe 3HAYUTEIbHO 00Jiee JOCTYITHBIM U KOPOTKUM.

Omnmcanne MoOpsiaKa MOCPEICTBOM JIEKCHKOIPAMDUIECKOH CTPYKTYPHI MTO3BOJISET MOy IUTh
OYeHb MPOCTOii OTBET Ha BOHPOC (4): MaKCHMAaJIbHBIH KOHYC BCIOJY ILJIOTEH TOTJA M TOJBKO
TOrJIa, KOIJIA CPEJI COOTBETCTBYIONIMX apXUME/IOBBIX KJIACCOB HET HauMeHblero (cum. 3.12).

2. ApXI/IMeILOBa IKBHUBAJICHTHOCTD

Bcerony B aToM maparpade X — JIMHEHHO yHIOPSI0UEHHOE BEKTOPHOE ITPOCTPAHCTBO Hat R.
OTHoleHne mopsiJIKa 10 yMOJTYaHuio obo3HadaeTcst cuMBosioM <. Momyib || BekTopa z € X,
KaK OOBIYHO, rojiaraercd paBHbIM x 1pu ¢ = 0 m —z npu x < 0. Cumpos linY oboznagaer
JmHeitHyo 0060/109Ky noamuokecTBa Y C X. Mbr Tak:ke Oy/ieM HCIIOJIB30BATH YIIPOIIEHHYIO

zamucs lin(z,Y) :=lin({z} UY).
2.1. Beezem na muoxkecrse X+ := X+\{0} ornomenne jmueiiHOro mpeanopsiika
ry e (Fa>0)(zr<ay)
U COOTBETCTBYIOIHE OTHOIIECHHUS] CTPOrOrO IOPSI/IKA M SKBUBAJCHTHOCTH
T=<y & yRT,
r~y s rxy&y<xe.
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OTHOMIEHNST < U ~ HA3BIBAIOT APTUMEIOBHIM MANCOPUPOBAHUEM T GPTUMEIOBOT] IKGUBAACHM-
HOCTDIO.

[TommuoKecTBO D C X HasoseM duckpemuvim, eciii D C X u snementsr D nomapHo
He sKBuBasieHTHB: (Vd,e € D)(d # e = d ~ e). B m06oM JnHEHHO yHOpsJIOYeHHOM BEK-
TOPHOM TIPOCTpaHCTBe X CYIIECTBYET MAKCHUMAJBHOE JUCKPETHOE MHOXKECTBO. Besikoe Takoe
MHOYKECTBO SIBJISIETCST PE3YILTATOM BBIOODPA MPEICTABUTENEH B KIACCAX apXUMEOBOM SKBUBA-
JgerHoctH, T. e. umeeT Buj {d. : ¢ € XT/~} rne d. € ¢ mist KaxkI0ro0 Kiiacca c.

2.2. Kax Jierko BUIEeTD, JJIs JIoObIX X,y € X T
r<y < Va>0)(z<ay) & VYaeR)(VS>0)(ax < Py). (1)

Pacupocrpanum orromenne < ¢ Xt x X+ na X x X1, npunumast (1) B KauecTse onpe/ie-
JIEHUST BBIPDAYKEHUsT T < ¥ JIJIsI IPOU3BOJIBHBIX & € X my € X+,

st smioboro Bektopa y € X't muoxkecrso {x € X : x < y} siBIsIeTcss BEKTOPHBIM
norpocrpancTBoM X .

< Ecmu x1,x9 <y u ay,ag €R, 1o 1151 Becex o > 0 MBI IMeEEM (1T, (ioTy < %y 1, CJIeJIOBa-
TEJILHO, (\1 L1 + Qoo < QY. D>

2.3. Bcsakoe qHCKpETHOE MHOYKECTBO JIHHEHHO HE3aBUCHMO.

< Nnpyknweit o n € N nokazxewm, 4ro Jiroboe nojmuoxkectso E C D montaoctu |E| = n
smHeitHo HesasucuMo. Ciydait n = 1 tpusnajen. Ilycrs Bce mommuoxkecTBa D MomHOCTH 1

. 1
JINHEHHO HE3aBUCHMBI U IIyCTh Z?=+1 aze; = 0, tme e; € D momapro pazmmanbl, o; € R.
He napymast 06IIHOCTH, MOXKHO CYMTATD, UTO €1, .. .,€, < €,11. TOrma ¢ yuerom 2.2
n n
Qnt1€nyl = E (—ai)ei < ent1, —Qnii€nil = E aie; < entl
i—1 i=1
1 109ToMy 1 = 0. Citerosaresbio, » b, ae; = 0, a 3Haunur, ag = -+ = q,, = 0 100 Ipes-

IIOJIO2KEHUIO MHIYKIUU. >

2.4. Ecm z,ye X" ux~y, 10 A:={a>0:ay<z}u B:={3>0:x<fy} — nemny-
CTBIE OrpaHMYEHHBIE MHOXKECTBA, MPUYEM TOUHbIe rpanunbl sup A u inf B cosnagator. O6o-
sHaunM X obmiee sHavenue cumsosoM 1. Taknm obpasom, ecim & ~ Y, To i — eJIMHCTBEHHOe
YHCJI0, YIOBJIETBOPSIONIEE YCIOBUIO

(%—a)y<:c< (§+a)y Jutst Beex o > 0.

Jlemma. Ilycts x,y € X1, x ~y, 29 := ‘SC — %y| Torga xg < y u lin{xg,y} = lin{z,y}.
<1 Hutst yiroboro umcia « > 0 u3 x < (% + a)y CIeyer T — %y < ay, a u3 (z — a)y <

Y
cJiesryeT gy—x < ay. Takum obpasom, |x— %y‘ < ay ayg Beex o > 0, 1. e. g < y. PaBencrso

lin{zg,z} = lin{z, y} oueBumno. >
2.5. Jlemma. Ilycre Y — koneunoe nogmuoxkecrso X+, Ecmm x € X't mwx ¢ linY, 1o
cymecrByer Takoif Bekrop & € X, uro lin(z,Y) =lin(z,Y) u (Vy € Y)(Z = y).

< st kaxkioro Bekropa z € Z := {z € X" : lin(z,Y) = lin(z,Y')} nonoxunm

min{y €Y : z~y}, ecm (JyeY)(z~vy);

y(z) = 0, eciia (Vy € Y)(Z ad y)
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[MockobKy MHOXKeCTBO {yY(Z) : 2 € Z} KOHEYHO, CyIECTBYET TaKoil BEKTOp & € Z, 4TO

y(Z) = min{y(z) : z € Z}.

Honycrum, y(Z) # 0. Torma y(2) € Y u & ~ y(Z). CornacHo siemme 2.4 mMeeTcst TAKOi
BeKTOp To € X1, uro Ty < y(¥) u lin{Zo,y(7)} = lin{z,y(Z)}. U3 coornomennii x ¢ liny’
u lin(z,Y) = lin(x,Y) cuenyer, uro & u y(Z) suHeiiHO He3aBUCUMBI, U 109TOMY Zo # 0.
C napyroit CTOPOHBI,

lin(Zo,Y) = lin(lin{Zo, y(Z)} UY) = lin(lin{Z,y(z)} UY) = lin(z,Y) = lin(z, ),

a 3HauuT, T € Z U, cuepoBaresblo, y(Z) < y(Zg). Takum obpazom, Tg < y(Z) < y(Zg) ~ Tp.
[MosyuenHoe nporuBopeune 1mokasbiBaetr, 410 y(Z) = 0, T. e. & — UCKOMBINl BEKTOD. [>

3. Jlekcukorpadundeckmne CTPyKTyPpbl

3.1. Ilycth S — nmpounsBoabHOE MHOXKECTBO. 11 0603HaUeHNsT XapaKTePUCTUIEeCKOMH (DyHK-
i mogmuoKecTBa T C S GyneM ucronb3osarh cumBos 1p. Cumsosom RY obosmauaercs
BEKTOPHOE IPOCTPAHCTBO Beex PyHKImMNA x: S — R ¢ moToYedHbIMU JTUHEHHBIMY OTIEPAIIAs-
vi. Ecomn zq, ..., 2, € RS 1 olar,. .., a,) — dopMabHast 3aICh KAKOrO-JMb0 yTBEPIKICHUS
0 9HCIax, TO

[p(21,...,2n)] = {s€85:0(z1(5),...,2n(5)) }.

B wacrrocrn, ecu z,y € RS, 1o [z #£y] = {s€ S : z(s) #y(s)}. Hocumenw [z # 0] bynkimn =
YCJIOBHMCST 0003HAYATE CHMBOJIOM [Z].

BekTopHoe mompocrpanctso R, cocrosimue u3 GyHKIMA ¢ KOHEIHBIMU HOCHTEISIMHI, 000-
snauuM wepes RS . Eciu (S, <) — Jmmeiino ynopsiiouennoe MHOKeCTBO, To R — pexTop-
Hoe mojmpocrpancteo R, cocrosimee n3 byHKIWMIE ¢ BIOIHE YIOPSIOYCHHBIME HOCHTE/ISMI,
a RY,

HOCHUTEJIb [T] KOTOPBIX MMeeT HaMMeHbInuii sjeMeHT min[x]. OuesnHo,

— moamuOKecTBO RY, cocrosimee m3 HysmeBoil dbyHkimu n Beex dynxmmii & € RY,

R c RS c RS c R,

min

S

OTMeTI/IM, 9TO IIOAMHOXKECTBO Rmin C RS He BCerga ABJIACTCA BEKTOPHBIM ITIOAIIPOCTPAaHCTBOM.

stz € RS, onpesesum umcro z(min) € R, momaras

min

(nin) z(minfz]), ecam x # 0;
z(min) :=
0, econ x = 0.

3.2. Ilycte X — BekTOpHOE IpocTpaHcTBO Ha i R, S — mnpousBosibHOE MHOXKeCTBO. DyHK-
muio (+|+): X x S — R Hazosem deoticmeennocmuio, ecau jyist mobbix z,y € X, s € S, a € R

(+yls) = (x|s) + (yls),
(ax|s) = afz]s),
x#0 = (Is€S) (z]s) #0.

Host (+]+): X xS — R paccmorpum dyHKImMN

(x]: S =R, [s): X =R, (x]|(s):=[s)(x):=(z]s) (re€X, s€b)
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1 IIOJIOZKHUM

(X]:={(z] ;x € X}, [S):={[s):s€S}

Kak Jierko Bujierh, ciaejyomue cBojicrea dbyukmun (- |+): X x .S — R paBHOCHIJIBHBL:
(a) (+|+) sBIsIeTCS ABOIICTBEHHOCTBHIO;
(b) 2 — (2] — m3omopdusm X ma BexTOpHOE MOmIpocTpancTo (X] C RY;
(c) [S) € X# — mmuoxkecTBO DYHKIMOHAIOB, pasJesionee TOUKH X .

Hocurens [(z]] dynkuun (z]: S — R ycnoBumMes 3anmceaTs B Buje [z).

3.3. Ilycrs (S, <) — JMHEHHO yHOpsJIOYEHHOE MHOXKECTBO. BEKTOPHOE MOIPOCTPAHCTEO
X C RY 6ynem nazears (nped)aekcurozpaduieckum, ecim

(a) X C RS (coorsercrsenno, X C RS, );

(b) (Vs € 8)(Fz € X\{0})(s = min[z]).
ITpumepom (mpe/)sreKenKOrpaduaeckoro MpoOCTPAHCTBA CJIYZKHUT JI0O0E IOAIIPOCTPAHCTBO
X C RS, ynossersopsioriee sryouenusm RS € X C RS (coorsercrrenmo, RS ¢ X € RS, ).

[Tycrs X — npowussosbHOe BeKTOpHOE mpocTpancTBo Haj R. Tpoiiky (S, <g, (+|+)) Haz0-
BeM (nped)aekcurozpaduueckoti cmpykmypol na X, eciu <g — JIMHEHHBIH NOPsIOK HA S,
(+]): X xS — R — npoiicreennocrs u (X] — (mpen)iexcukorpadudeckoe MOIPOCTPA-
crBo RY. Bmecro (S, <s, (+]+)) ycnosumea mmacars (S, <g), €C/IM U3 KOHTEKCTa sICHO, O KAKOI
JIBOMCTBEHHOCTH (- |+) MJIET pedb.

3.4. Eciu (S, <s, (-|+)) — npemiekcukorpaguieckasi crpyKTypa Ha BEKTOPDHOM IIPOCTDAH-
cree X, To [s) # [t) npm s # t u [S) — Jsmmeiino HezapucHMoe momMHOKECTBO X7

< Buaronapst 3.3 (b) umeercs takoe cemeiicTBo ssemenToB s € X \{0}, 94T0 $ = min|x]
JIJ1s Beex s € S.

IIycrs s,t € S, s <g t. [lonoxkum x := x4. I3 s <g t = min[z] caeayer [s)(z) = (x|s) =0

u [t)(x) = (x|t) # 0, a snaqur, [s) # [t).

PaccMoTpuM monapHo pasiaudHble TOYKA S, .. ., Sp € S, HEHyJIeBbIe Yncia o, ..., 0, € R
¥ oKazkeM, 410 f := > | a;[s;) # 0. Ilycrs aust onpezenennoctn s1 <g - -+ <g Sp. Llomoxkum
x 1= Xy, . [JOCKOIBKY S1,...,8p-1 <g Sp, = min[z], Mbl umeeMm (z|s1) = -+ = (z]s,-1) = 0,

(x|sn) # 0. Caepoarensro, f(z) =1 a;{x|s;) = an(z|sy) #0, a 3nauur, f#0. >
3.5. Ecim <y — smmmeiinsiit mopsiok Ha S u X — (mpen)iekcukorpaduaeckoe moipo-
crpancTso RS, To (mpes)nexcuxorpadureckas crpykrypa (S, <s) Ha X ¢ ecTecTBeHHOIl IBOii-
CTBEHHOCTBIO (x| ) = x($) HasbIBaeTcs Pynrkyuonarvhot. Kak Jerko BUIeTh, ¢ TOYHOCTHIO JI0
usomopdusma Besikast (pejt)iekcukorpaduieckasi CTpyKTypa siBJjisteTcst (pyHKIMOHATIBHOIA.
[Tpumepamu GyHKITNOHAILHBIX JEKCUKOTPADUIECKUX CTPYKTYDP CIIyKaAT

(S, <wo) HARY, (S, <) ma RS, (S, <) na RS,

e <., — IOJIHOE yIIopsijiovenue S, <g — MPOU3BOJIBHBIN JIMHEHHBII TOPsiIOK Ha S. Ecau S =
{:I:% n e N}, <g — CTAHAAPTHBINA YMCJIOBOI TOPsiIoK Ha S u X = Rfﬂ +Rlg, 10 (S,<5) —
npeJiieKcuKorpadudeckast, HO He JiIeKCuKorpaduieckas GyHKIINOHAJIbHAA CTPYKTypa Ha X.

3.6. Ilycrb (S, <s, (+]+)) — (mpex)iekcukorpadudeckas CTPyKTypa Ha BEKTOPHOM IIPO-
crpancrse X. st Besikoro snementa ¢ € X mostoxkuM (2 |min) := (z](min), T. e.

0, ecu x = 0.

(x |min) = {(x‘ min[z]), ecim x # 0;

Kaxk serko BHUJIETH, MHO?KCCTBO

X(S,<s, (+]))" :=={x € X : (x|min) > 0}
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npejicraBisieT coboii MakcnMaabHbIil Koryc B X . CooTBeTcTByIOIIEe JIMHEHHO YIIOPsiIOYeHHOe
BekTOpHOE mpocTpancTBo (X, <x) ¢ momoxurensusiM komycoM (X, <x)" = X (5, <s, (+]))*
oboznaunm cumBosioM X (S, <g,(+|+)), a mopsymok <y HazoBeM (nped)aekcuroepaduiecrum
nopadkom, nasedermnvim cmpykmypot (S, <g, (+]-)).

3.7. Ilycrp (S,<s,(+|)) — nmpemrekcukorpacpuieckasi cTpyKTypa Ha BEKTOPHOM IIPO-
crpancree X . CHabuum npocrpanctBo X MOpsiIKOM, HaBeJeHHbIM cTpyKTypoii (S, <g, (+]+)).
(a) st mrobbix x,y € X

v <y < (z|t) <(y|t), rae t =min[(z]# (y]] =min{s € S: (z|s) # (y|s)}.
(b) st smro6bix x,y € X+
r=<y < min[z] > gminfy], <y < minfz] > minfy], x~y < minfz] = minfy].

(¢) st Jrroboro MakcHMaJIbHOrO JUCKpeTHOro MHOXKectBa D C X | cHab»KeHHOro mopsii-
koM d <p e & e < d, orobpaxkenue d +— min[d]| sABJISETCS HOPSJIKOBBIM H30MOPMHUIMOM
mexty (D, <p) u (S, <s).

3.8. Jlemma. Ecin X = (X, <) — JmHEHHO yrnopsjo4eHHOE BEKTOPHOE MPOCTPAHCTBO
u D — nponsBoJbHOE MaKCHMAJIBHOE JUCKPETHOE MOAMHOXKECTBO X, CHAOKEHHOe MOPSIKOM
d<pe & e<d 1o (X, <) =X(D,<p,(:|+)) ams wexkoropoii npereKcuKkorpagpIecKoit
crpyktyper (D, <p,(-|+)) #a X, npudem Takoit, aro (d] =14y ans seex d € D.

< Pacemorpum npousBosibHBI 3ement d € D u 3amernm, uro d ¢ lin(Xy, U Dy), tae
Xg={r e X:z=<d}, Dg:={e € D:d < e}. HeitcrBurensuo, u3 2.2 ciaeayetr, 410 X4 —
BEKTOpPHOE MoAnpocTpancTBo X, a 3Hadnt, B ciaydae d € lin(Xy U Dy) nammesncs O6bl 971eMeHT
x € X7, ynosnersopsomuii coorromenmio d € lin(z, Dy), KOTOpoe HEBO3MOXKHO, TaK Kak
MHOKecTBO {d, x} U Dy INCKPETHO ¥ IIOTOMY JIHHEHHO He3aBucuMo (cM. 2.3).

Cite10BaTeNIBHO, JTsl Kaska0ro d € D MOXKHO BBIOpaTh Taxoil byHKImoHas fy € X7, uro
fald)=1, fa(z)=0nmpuz € X, z <du fg(e) =0 npu e € D, d < e. Oupenesnm byHKIIIO
(«]9): X x D — R, nonaras (x|d) := fq(z). Ouesnmno, (d] = 11, ams seex d € D.

[Tycts z € X, TTocKoJIbKY JMCKPETHOE MHOKECTBO D MaKCUMAaJbHO, & ~ d Jjisi HEKOTO-
poro astementa d € D. [To emme 2.4 mbt umeem £ —2d < ‘x—gcﬂ < d, orxyna fq(r—5d) =0n
nosromy (z|d) = 5 > 0. Kpome Toro, ecm e <p d, 10  ~ d < e, a 3na4nr, (z|e) = f.(r) = 0.
Taxkum obpaszom, d = min[x] u (x| min[z]) > 0.

I3 ckazamnnoro Bele ciepyer, 9o dyHkuus (-|-) sBisercs asoiicTBeHHoCTHIO, 8 (X| —
npeIeKCHKOrpadbIuecKuM IpocTpancTBoM, Tak Kak Ry C (X] € RS, Kpowme Toro, ycranos-
nennoe Brmoderne X+ C X(D, <p, (+|+))" Baeder pasencrso X+ = X (D, <p, (+|+))" BBumy
MaKCUMaJIbLHOCTH KoHyca X . >

3.9. [Tycts (S, <) — smneiino ynopsiaouennoe Muozxectso. s x € RS ut € S onpeemm
bynxmmo x]; € RS, monaras x7;(s) := 2(s) upu s < t u 2];(s) := 0 upu s > t. Tna x,y € RS
6yJieM TOBOPUTD, 9TO T u Y cosnadatom do t, u mucarb  =; y, ecan (Vs < t) x(s) = y(s),
T. e x]y =Y.

Jlemma. Ecin (S, <) — JsmHeiiHO ynopsiioueHHOE MHOMKeCTBO, X — BEKTOPHOE IIOIIPO-
crpanctso RS w RS € X € RS, | ro cymecrsyer ymmeitnblii omepatop (x> x*): X — R,
O0JIAIAIOIHIT CITE/IYIOIMH CBOHCTBAMH:

(a) RS c X* C RS e X* := {o*: 2 € X};

(b) x +— o* — Jmmeiinblii u mopsiarosbli nzomopgusm X (S, <) ma X*(S, <);
(¢) 2* = & jrst Beex x € RS ;
(d) *]; € X* s Bcex x € X ut € 8S.
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< Iyers (S, <) — JuHERHO yIOPsSIOYEHHOE MHOYKECTBO U Y — BEKTOPHOE MOJIIPOCTPAH-
S

Kak serko Bujers, semmva Iloprna npumennma Kk MHOXKecTBY map (X, F'), cocTaBiIeHHbBIX
U3 IPOCTPAHCTB R;fn C X C Y u oneparopos F: z € X — z* € RY, ynosiersopstomux
yeaosusiv (a)—(d), ornocurensao mopsiaka (X1, F1) < (Xo, Fy) < (X7 C Xy, Fy = Fylx,).
CrnemoBarebHo, 3ajada OyIeT pelreHa, eCau Mbl PACCMOTPUM BEKTOPHOE TOAPOCTPAHCTBO
X C Y, conepxamee RS | oneparop F: 2 € X +— x* € R, ynosnersopsiomuii (a)—(d), dbuk-
cupyem BekTop y € Y\ X u nponoskum F' Ha nognpocrpanctso X + Ry C Y ¢ coxpanennem
yeasosuii (a)—(d).

Cuabmum Y, X u X* nopsiikamu, HaBeJeHHbIME (DYHKIIMOHATIBHON cTpYKTYypoil (5, <).

[IpeiBapuTe/IbHO TTOKAYXKEM, UTO JIJIsT JIFOOBIX 1,29 € X 1 § € S

crBo RS, yioBieTBopsiiolee BKITIOYEHHSIM an CYCR

1 =5 Ty & x] =5 X5 (2)

[TockobKy Tpu 1 7# T9 COOTHOIIEHHWE X =g T9 PABHOCWIBLHO $ < min[r # zg], npudem
[x1 #x9] = [|x1 —2|], Mst obGocHOBaHUs (2) JOCTATOYHO TI0KA3aTh, 4TO min|xr] = min[z*)
st Beex © € X1, HeiictBurensno, omaronaps 3.7 (b) mist x € X u s € S Mbl umeem
1 pr— ~Y * Yy * pu— 1 * pr—
minfz] =s & z~ 1y & 2"~ 17, =11y © minfa"]=s.
PaccMoTpuM cireyromee moaMHOXKECTBO S':

T:={minjx#y]: z € X}.

Bamernm, uro T — mavanbueii dparment S, 1. e. (Vs € S)(Vt € T)(s <t = s € T).
Heticrpurenbho, ecmz € X ns <t =minfz #y], Tox’ := 2+1) € X us =min[z' £y] € T.

st kazkioit roukn t € T paceMoTpuM Kakoi-immbo snemeHT x € X, yIOBI€TBOPSIOIIN
pasencTBy t = min[z #y], n nonoxnm x; := = — x(t)lyy + y(t)1gy, ' := minfz; # y]. Torma
Jyist Beex t € T UMEIoT MeCTO CJIELyIOIIe COOTHOIICHNUSI:

nweX, tel, t<t, x=py.

Onpenennm dbyuknuio y* € RY, nomaras y*(t) := x}(t) mma t €T u y*(s) := 0 ga s€ S\T.
Iloxaxkem, uTo mus Bcex t € T'

.%';k = y*.
Heiicteurenso, myctb s < t'. s x4 =g y u x4 =y y cenyer xs =, oy, vae r := min{s’, t'},
OTKYy/Ia COIIacHO (2) BbITeKaeT coBnajenne ri =, rf. CiaenoBarensno, y*(s) = xk(s) = x;(s),
TaK Kak § < 7.

[Iponomkum nzomopdusm F: X — X* no smneiinoro oneparopa F: X +Ry — RS, mona-
rasg F(z+ay) := o* +ay*, u nokaxewm, 1o oneparop F u ero 06pas X *+Ry* y10B1eTBOPAIOT
ycaosusim (a)—(d).

(a) Ecm t € [y*], 7ot € T, t < t/, y* =p z; mw nosromy {s € [y*] : s < t} C [z]] —
BIIOJIHE YIIOPSI0YCHHOe MHOYKECTBO, TaK Kak zf € X* C RY . Beumay npoussosbuoctn t € [y*]
OTCIOTa BBITEKACT BIIOJIHE YHOps09eHHocTh [y*]. U3 Brmouennii y* € RS u RS € X* C RS,
crenyer, uto RS C X* + Ry* C RS .

(b) s obocnopamms nnbeKTUBHOCTH omepartopa F: X + Ry — X* + Ry* mocrarouno

* = y* st HekoToporo BekTopa x € X. Ilockombky

nokasarb, uro y* ¢ X*. Honycrum, x
T # Y, MBI MOXKEM pPaccMoTpeTh TOuKy ¢ := min[z #y|] € T. Torma t < t' u z* = y* =y z},
oTKyJa B cuiy (2) caemnyer, 4to & =y 4. C Jpyroil CTOPOHBL, Ty =y Y, & 3HAYUT, T =y Y U
nosromy t' < minf[z # y| = t Boupekn HepasencrBy t < t'.

JloxazkeM, uto F coxpaHseT NOpsiIOK. DJIeMEHTAPHBIC BHIK/IAKH [OKA3BIBAIOT, UTO JIIsI

9TOrO JIOCTATOYHO ODOCHOBATH MMIUIMKAIMKN T <Y = =¥ <y* m x>y = x* >y* s Jodbix
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x € X. Orpanuanmcsi JJ0Ka3aTeJILCTBOM IIEPBOl UMILTHKAIIH, TOCKOJIBKY BTOpast yCTAHABJIM-
BaeTCs COBEPITEHHO aHATOTUTIHO.

Uraxk, monycrum, uro x € X, x < y, HO ¥ > y* (paBeHcTBo =* = y* yKe UCKIIIOYEHO).
Torpma z*(t) > y*(t), tae t := min[z* # y*]. Ecam 661 t > [y*], To ¢ yuerom (d) mbI 661 unMesn
y* = y*]y = %]y € X*, uro meBosmoxkuo. CieoBarensuo, (3s € S)t < s € [y*] C T,
a 3HaunT, ¢ € T u MBIl pacnojaraeM BeKTopoM T; € X u Toukoit t' € T, JjIsi KOTOPbIX
t <t x =y, xf =p y*. Hanee, xf(t) = y*(t) < 2*(t), upuuem =} =; y* =; x*, orryzna
crenyet, uro x; < z*. Torma xy < x, mocKoJbKYy F' ABiIAeTCA HOPAIKOBBIM N30MOPMOI3MOM.
W3 mepapenctB 2 < T < Y TOCJIETOBATENHLHO BBIBOJUM 0 < . — Ty < Yy — Ty, T — T X Y — Ty,
minfx; #x) > minfa, #y| = ', 2 =p x, 7 =p =¥, 27 (t) = 2*(t) u nosygaem nporuBopeune
¢ HepaseHCTBOM (1) < x*(1).

Venosue (c) coxpansercs BBy BKiouenus RS C X.

(d) Ecm t € T, vo y*]; = 2]t € X*, aecmu t ¢ T, 10 y*|; = y*. CuenosaresbHo,
(*+ay")]e ="t + ay*|s € X* + Ry* qa mobeix z € X, a € R, t € S. >

3.10. BAMEYAHUE. [IpemjioxkenHoe HAMU JI0KA3aTEIbCTBO JIeMMBbI 3.9 He SBJISETCH OPH-
IMHATBHBIM 1 (haKTUIECKH BOCIIPOU3BOIUT CXEMY JO0Ka3aTesJbeTBa TeopeMbl |5, 3.2|. Sunaun-
TEJILHOTO YIPOIIEHUSI [I0 CPABHEHUIO C BBIKJIQJIKAME, [IPUBEJIEHHBIMU B [5], yjaercs 1ocTudb
3a cuer JieMMbI 3.8, burarojapsi KOTOpoil abCTPaKTHOE YIIOPsiIOYEHHOE BEKTOPHOE ITPOCTPAH-
CTBO 3aMeHsIeTCsl ero PYHKIIMOHAIBHON ITPEeIIeKCUKOIPAMDUIECKOl KOIHei.

3.11. Cuenyrornee yTBepKIeHUe, BhITeKaromee u3 3.8 u 3.9, npejcrasisier coboii mepe-
dopmysnpoBky Teopemst |5, 3.1, cormacHo KOTOPOii BO BCSIKOM JIMHEIHO YIOPSIIOYCHHOM BEK-
TOPHOM TIPOCTPAHCTBE MOPSIIOK SIBIISETCS JIEKCHKOTPADUIECKIM.

Teopema. Ilycrs X = (X, <) — JsmmHEHO yIIOpsiio9eHHOEe BEKTOPHOE IIPOCTPaHCTBO. Pac-
CMOTPHM IIPOH3BOJIbHOE MaKCHMaJbHOE JUCKpeTHoe MHoxkectBo D C X u cHabauM ero mo-
psiikoM <p, nosaras d <p e < e < d. Torma (X, <) = X(D,<p,(+|*)) ama Hekoropoii
Jsekcukorpaguieckorii crpykrypbl (D, <p,(-|+)) Ha X, ygojerBopsiromieii CiegyrOmuM Jo-
mosmmTesbabIM yeopuam: (d] = 1ygy u (z]]q € (X] s seexx € X nd € D.

3.12. Ilycrs X — BekTOpHOE TpocTpaHcTBo. HamoMHuuM, 4TO cuibHeliieil JOKaIbHO Bbl-
nyKJIoii Tomnosorneit Ha X siBJisieTcst TomoJorus Makku Ty, COIVIACOBaHHAsl C JIBOJICTBEHHO-
cruio (X, X#) (cum., manpuvep, [6, 8-2-14; 1, 10.4.4]). OTHOCHTETLHO TOM TOMOJIONMM HeTpe-
PBIBHBI BCe JInHeHHbIe (byHKIMOHabL. Boinykiioe muoxkectso C' C X miioTHO B X OTHOCHTEIIb-
HO TOIOJIONMU Tx TOIJIA M TOJIBKO Torja, Korja C He JIEXKUT HU B KAKOM IOJIyIIPOCTPAHCTBE
{reX: f(x)=a}, re f € X#\{0}, @ € R. Konyc K C X mioren 8 X OTHOCHTENHHO Ty TO-
IJla ¥ TOJILKO TOIJIA, KOIJIa HyJseBOi (hyHKIIMOHAI SIBJISIETCSI €JJMHCTBEHHBIM JIMHEHHBIM (DyHK-
IHOHAJIOM, TIOJIOXKUTENBHEIM Ha K : ecim f € X7 u f(z) = 0 aisa seex € K, 1o f = 0.

Teopema. Ilycrb X = X(S,<s,(-|+)), nue (S,<s,(-|:)) — npemiekcukorpacpuieckasi
crpykrypa na X. Konyc IJIOTEH B THOCHTEJIHO CHJIbHEHINEH JIOKAJIBHO BBILYKJIOM
X. Ko Xt o X orHO ) 0 )
TOIOJIOrMH TOIJIa U TOJIBKO Torja, korja B (S, <g) OTCyTCTByeT HAMMEHBIIHI JIEMEHT.

< Heobwodumocmo. Eciin B S cyiecTByeT HanMeHbINHii 37eMenT s, 1o s Bcex © € X \{0}
U3 HepaBeHCTBa $ <g minfz| caemyer, uro (x|s) = (x| min[z]) npu s = minfz] u (x|s) =0
B OCTAJBHBIX CJIydasix, a 3uaqnT, (z|s) > 0 mpu x > 0, ™. e. [s) — mosoxkurenbubrii Ha Xt
HeHyJIeBOi inHeitnbli dynkumonasn (em. 3.4).

Jlocmamounocmo. Tlycts umeercs memynesoit dynkmuonan f € X# takoit, aro f(z) = 0
quist Becex x € X T. ITockoubky f # 0, cymecrByer BekTop x € X1+, st koroporo f(z) > 0.
[Tokazkem, uTo min[x] = min S.

Honycrum Bolpekn JloKasblBaeMOMy, 4TO § <g min|x] s Hekoropoii Touku s € S. Co-

riacho 3.3 (b) mmeercs Bekrop y € X, st koroporo minfy| = s. [Tonoxuwm z := y— ﬂfy(—?_)l:c
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IMockosbky minfy] = s <g min[z], mmeror MecTo paBercTBa min(z] = s u (z|s) = 0. Cremona-
TEJIBHO, (z\mm> = (z|s) = (y|s) =20, n e. 2 € X mwmnosromy f(z) > 0. C mpyroii cropoust,
) 41

f@) =1 -G @) =-1L>

4. Ba3ucHble MaKcuMaJIbHbIE KOHYCHI

4.1. Eciu X — npousBojibHOe BekTOpHOE mpocTpancTBo HaJg R u B — 6a3uc [amensa B X,
TO 3HAYEHHUE JBONHCTBEHHOCTH (x|b) MO yMOJYaHMIO OUpeenseTcs Kak Kod(DduiueHT mpu
be B B paznoxkennn y ;. p(x|b)b Bekropa x € X mo Gasucy B. B stom ciyuae (B, <p) —
JieKcuKorpaduieckas CTpyKTypa Ha X JiJist JTF0O0T0 JIMHEHHOTO 1opsijika < g Ha B. CTPYKTYpBI
TaKOro BuJA Oy/ieM Ha3bIBATL OA3UCHBIMU.

MakcuMaJibHBIH KOHYC B BEKTOPHOM IpocTpaHcTBe X HA30BEM 0a3UCHbLM, €CJIA OH COOT-
BeTCTBYeT 6a3uCHOIl JIeKcuKorpaduieckoit crpykrype, T. e. umeer B X (B, <p)" Jyisi HeKo-
TOPOTro JIMHEHHO ynopsijgodennoro 6asuca lamesst (B, <) npocrpancrsa X .

4.2. Jlemma. Ilycte B — 6a3wc I'amesist B IHHEHHO yIIOPSIZIOY€HHOM BEKTOPHOM MPOCTPAaH-
crBe X u myctb < — JHHEHHBIH nopsiyiok Ha B. Cienytorue yTBepKIeHUsT PABHOCHIBHDI:

(a) X = X(B,<,);

(b) mHO)kecTBO B suckperro n b<pc < b>c mus Bcex b, c € B.
< (a)=(b). Iycrs X = X (B, <p). Torua mis mobbix b, c € B

b<pc & min{b,c}:b < (b—¢|min) >0

S b-—ceX(B, <) =X" < b>c

Ecmu b € B, 1o (b|min) = (b|b) = 1 > 0 u, crenosaresnsio, b € X(B,<z)" = X*. Pac-
CMOTPHUM TIPOU3BOJIbHBIE b, ¢ € B, b # c¢. llpeanosokumM Jijisi OIpeieJIeHHOCTH, 9T0 b <z C.
Eciu b ~ ¢ Bonpekn J0Ka3bIBaeMOMY, TO UMeeTcs dnciao o > 0, st Koroporo b < ac. Toraa
ac—be Xt = X(B,<z)" unosromy (ac — b|min) > 0. C gpyroii cropoust,

(e — b|min) = (ac—b|mBin{b,c}> = (ac —b|b) = —

(b)=(a). Yrobsr ycranosurs Brimodenne X+ C X (B, <p)", paccMOTpUM IIPOU3BOJILHBILI
sstemenT x € X1, monoxknm b := min[z], a := (z|b) u nokaxewm, uaro a > 0. Ecsmm MuoxecTBO
C := [z]\{b} mycro, To x = ab u Torga a > 0. IIycts Teneps C # &. [Ipeanonokum Bopekn
nokasbiBaeMoMy, uto o < 0. s xaxzoro snementa ¢ € C Mbl uMeeM b <z ¢, OTKyJa
¢ yueroM (b) BeiTekaer ¢ < b, 1. e. ¢ < b mua Beex 5 > 0. Torna

x—abzz Z‘x\ |C<Z|x\ HC‘ = —ab,

ceC ceC ceC

rie |C| — auciio snementos Muoxkecrsa C. Coenosaresibio, & < 0, 9T0 IPOTUBOPEUUT yCJIO-
Buto ¢ € X . Takum obpasom, X+ C X (B, <p)", a snauut, X~ = X (B, <z)" B cuity mMakcu-
MaJIbHOCTH KOHyca X . [>

4.3. CaeacrBue. MakcumasipHbIi KOHyc K B BeKTOpHOM NpocTpaHcTBe X sIBJsIeTcst Oa-
3HCHBIM TOIJIa U TOJIBKO Torja, Korja B (X, <) cymecrByer jucKperHsiii 6a3uc amvess.

4.4. BAMEYAHUME. MakcumaabHOe JUCKPETHOE (M MOITOMY JIMHEHHO HE3aBUCHMOE) TOJI-
MHOXKECTBO JIMHEHHO yIOPsIIOYEHHOTO BEKTOPHOI'O IpocTpancTBa X He 00s13aHO ObITh Oasu-
com [amesnsi, mazke eciim B X cymiecrByer AucKperHblii 6asuc Famens. IIpumepoMm ciryzxur
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MaKCHMAJIbHOE JINCKPETHOE MHOXKECTBO {1{n} ne N} B mpoctpancree RY +Rly C RY ¢ mo-
PsIJIKOM, HaBeJIeHHBIM (byHKIMOHAJIBbHOI Jiekcukorpadudeckoii crpykrypoit (N, <y), rie <y —
cranmapTHbiil opstok Ha N. Jluckperabiv 6azucom [amesisi B JaHHOM ciiydae sSIBJISIETCS, Ha-
npuMep, MHOXKeCTBO {1j, oy : n € N}.

4.5. Ecim (S, <s) — npemiekcukorpauieckasi CrpyKTypa MOIIHOCTH |S| Ha BEKTOpHOM
npocrpancree X u |S| < dim X, 1o B X (S, <g) He cymecrByer auckperHoro b6asuca Iamvesst.

< Hukakoe jquckpernoe muoxkecrso D C X (5, <g) me Moxker 6bITh 6a3ucom lamens B X,
tak Kak coracto 3.7 (b) orobpaxkenne d € D — min[d] € S nHDBEKTUBHO U, CJICJOBATEIILHO,
|ID| <|S| <dimX. >

B wacrHoCTH, 11151 J1E060T0 GECKOHETHOIO BIIOJIHE YIOPSIOU€HHOIo MHOXKeCTBa (S, <) mpo-
crpanctso R%(S, <s) me mmeer auckpernoro 6asuca lamens n mostomy R (S, <g)* cmyzxur
IIPEMEPOM MaKCHMATBLHOrO KoHyca B RS me spisiomerocs 6asucabiv (. 4.3).

4.6. BAMEYAHUE. ITockombKy 17151 BCsIKOii 1ipejiekcnkorpaduaeckoii crpykrypsl (S, <g)
na X mMeer mecto nepasencrso dim X < dimR® (em. 3.2 (b)), u3 4.5 ceayer, 9To HeGasHCHbIi
MaKCHUMAJBHBI KOHYC CYIIECTBYET B JIIOOOM TPOCTPAHCTBE, PA3MEPHOCTH A KOTOPOTO YJIOBJIE-
TBOpSET YCJIOBHUIO K < A < 27 119 Kakoro-jmbo KapiuHajaa K. DTUM CBOWCTBOM 00JIaJIaf0T
KapIUHAJIBI A, He SBJIAIONINECS CTPOTO MPEIeIbHbIME. HATOMHUM, 9TO KapINHAT A HA3LIBAET-
csl CMPo20 NPedenbHbiM, €CIIU JIJIst JTIOOTO KapAuHasa Kk u3 k < A caexyer 27 < X (em. |7, §5]).
HaumenbInmum cTporo npejienbHbIM KapauHaiaoMm spisercs Ng = [N|. Eciaun k1 — npoussosib-
HBIH KapauHat u K41 = 2" (n €N), To sup{s, : n € N} — crporo npezenbHblii KapauHad,
OTKY/a CJEIYET, ITO CTPOTO MPEIeTbHbIE KAPIUHAIBI 00PA3yIOT COOCTBEHHBIN KJIACC.

Taxum obpasom, coryiacHo 4.5 HeOA3UCHBIN MaKCHUMAJILHBIH KOHYC CYIIECTBYET B JIIOOOM
MPOCTPAHCTBE, PA3MEPHOCTDL KOTOPOTO OECKOHEYHA U HE SBJISIETCS CTPOTO MPEICTBHBIM Kap-
JuHajoM. TeM He MeHee 9TO HAOJIOICHNE HEe UMeET 0CODO0# TIEHHOCTH, TOCKOJIBKY, KaK OKa3bI-
BaeT MPUBEJIECHHAS HUXKE TeopeMa, HeDA3UCHBI MAKCUMAJIBHBIN KOHYC CYIIECTBYET B JIIOOOM
[IPOCTPAHCTBE HECUETHON pa3MEPHOCTH.

4.7. Teopema. B BekTopHOM mHpoctpaHcTBe X BCe MaKCHMAJbHBIE KOHYCHI SIBJSIIOTCS
6a3MCHBIMHE TOIJ[a U TOJBKO TOIJa, Korja X HMeeT KOHEUHYIO HJIH CUETHYIO PA3MEPHOCTD.

<1 Heobxodumocms. Ilycts pazmeprocTs dim X BekTOpHOrO mpoctparcTBa X OeCKOHETHA
u e cuyerHa. [Tokaxkem, aro B X MMeeTCs MAKCUMAJIBHBIA KOHYC, He SBIAIONUICT Ga3UCHBIM.
Ecmn |N| < dim X < |R|, To nyzkusiit nam daxr comepxkurcs B 4.6. [Iycrs dim X > |R].
Paccmorpum BrosiHe yriopsijiouenHoe MHOXKeCTBO (S, <g) u iBa ero nojmuoxecrsa M, N C S

TaKue, 4T
S=MUN,
M <g N (1. e.m <gmn st Bcex m € M un € N),
|M| = dim X,
N mnopsinkoBo n3omopduOo N.
(B kauecrBe S MoxkHO B3aTh opjuHat dim X + w u monoxkure M = dim X, N := S\M.)

OnpeieiM BeKTOpHBIE HojmpocrpancTsa Y, Z C RS, nonaras
Y:i={ycR: [y c N}, Z:={zeR3 :[z]c M}
ITockobKy

dimY = dimRY = dimRY = [R|, dimZ =dimRY = |[M|=dim X > [R|,
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pasMepHocTh cyMMbl Y + Z C RS coBmasaer ¢ pasmMepHOCTBIO X, & 3HAUAT, MOMKHO CIHTATE,
aro X = Y+ 7. Cuabpum X 1OPsiIKOM, HaBeJIEHHBIM (DYHKITHOHAIBHON JIEKCUKOTpahunIecKoit
cTpyKTypoii (S, <g), 1 HOKaKeM, U4TO MaKCUMAJbHBIH KOHYC X He sBsieTcss Oa3UCHDBIM.

[Tycrs Bolpeku JloKasbiBaeMoMy B X CyllecTByeT JUCKpeTHbI 6asuc ramesst B (cm. 4.3).
[Mokazkem, uro lin(BNY) = Y, mia dero Bo3bMeM NpoM3BOJIbHBIT dmement y € Y\{0}
u ycraHosuM Bkiodenue y € lin(B NY). Pacemorpum pasioxenue y = » ' a;b;, Tie
bi,...,bp € Bu ay,...,a, € R\{0}. YuurbBas JucKpeTHOCTb MHOXKeCTBa B, MOXKHO CUH-
TaTh, 9TO by < -+ < by, T. €. minfb] >4 -+ >5 minfb,] (cm. 3.7 (b)). Torma minly| = min[by,]
u nosTomy minfb,| € N, tak kax [y] C N B cuity Bkiodenust y € Y. I[Tockosnbky N — dunasb-
ublit dparment S, Mbl uMeeM min(b; |, ..., minfb,] € N u [b1],...,[by] CN, 1. €. by,..., by €Y.
CuepoBarensio, y = y i a;b; € lin(BNY). Takum obpasom, lin(BNY) =Y, a suaunr,
BNY — auckpernsiit 6asuc lamesss B Y, aro nporuBopednt 4.5, Tak Kak MPOCTPAHCTBO Y
uzomopdno RN(N, <y).

Jlocmamourocmy ycranosiiena, nanpumep, B |4, ria. IV, reopema 19]. Mbl npuseem 3/1ech
3JIeMEHTapHOEe JI0KA3aTeJIbCTBO, HE 3aJieiicTBYIONIee crenuduyecKine KOHCTPYKIMU U (hbaKThl
U3 TEOPUU T'PYIIIL.

[Tycte X — BekTopHOe npocrpancTBo pasmeproctu |N|, e N = {1,...,m} wm N = N,
u nycth K — MakcuMaJibHbI KOHYC B X . CHaOauM X JIMHEHHBIM BEKTOPHBIM HOPSIIKOM < g
U PaCCMOTPUM IPOU3BOJIbHBIH 6asuc [amesst (2, )peny C X . IlocTponm mocsie1oBaTebHOCTD
(Yn)nen C X, yIOBIIETBOPSIONIYIO YCJIOBHUIO

(\V/Z’] € {1’ .. ,n})(z 75.] = Yi ® y])a lin{yla cee ’yn} = hl’l{:ﬂl, R )xn}

st Becex n € N, ¢ TIOMOIIBIO CIEYIONIel PEKYPCUBHON IPOIEAYPhI: TOJIOXKUAM Y] ‘= T] U BbI-
OepeM B KaueCTBE Yp+1 NPOU3BOJIBHBIN BEKTOD I, CYIIECTBOBAHHE KOTOPOI'O yTBEPKIACTCS
B emme 2.5 st Y := {y1,...,yn} u = := xp11. Kak serko Bugers, {y, : n € N} — muckper-
ublit 6a3uc [amens B npocrpancrse (X, <x), a 3naunt, K — 6a3ucHblit kKoHyc corracuo 4.3. >
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Abstract. The celebrated Gordon’s theorem is a natural tool for dealing with universal completions
of Archimedean vector lattices. Gordon’s theorem allows us to clarify some recent results on unbounded
order convergence. Applying the Gordon theorem, we demonstrate several facts on order convergence of
sequences in Archimedean vector lattices. We present an elementary Boolean-Valued proof of the Gao—
Grobler-Troitsky—Xanthos theorem saying that a sequence x, in an Archimedean vector lattice X is
uwo-null (uo-Cauchy) in X if and only if z,, is o-null (o-convergent) in X*“. We also give elementary proof
of the theorem, which is a result of contributions of several authors, saying that an Archimedean vector
lattice is sequentially uo-complete if and only if it is o-universally complete. Furthermore, we provide a
comprehensive solution to Azouzi’s problem on characterization of an Archimedean vector lattice in which
every uo-Cauchy net is o-convergent in its universal completion.
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1. Introduction

Throughout the paper, we let X stand for a vector lattice, and all vector lattices are

assumed to be real and Archimedean. We refer to [1, 2| for the unexplained terminology and
facts on vector lattices and start with recalling some definitions and results. A vector lattice X
is said to be Dedekind (o-Dedekind) complete if each nonempty order bounded (countable)
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subset of X has a supremum. A Dedekind complete (o-Dedekind complete) vector lattice X is
said to be universally (o-universally) complete if each nonempty pairwise disjoint (countable)
subset of X, has a supremum. Clearly, each universally complete vector lattice has a weak
unit. It is well known that X possesses Dedekind and universal completions unique up to lattice
isomorphism which are denoted by X? and X*. We will always suppose that X C X% C X%,
whereas X° is an ideal in X*.

A sublattice Y of X is said to be reqular if y, | 0 in Y implies y, | 0 in X; while Y is order
dense in X if for every 0 # x € X, there exists y € Y satisfying 0 < y < x. Obviously, the
ideals and order dense sublattices are regular. In what follows, we will freely use the regularity
of X in X™“. Note also that X is atomic iff X is lattice isomorphic to an order dense sublattice
of RY (cf. [1, Theorem 1.78]).

A net (2q)aca in X o-converges to x if there exists a net (zy),er in X satisfying 2z, | 0
and, for each v € T', there is ay € A with |z, — x| < 24 for all @ > «,. In this case we write
To 2 x. This definition is used for instance in [2, 3]. Sometimes (in particular, see [1, 4, 5]) the
slightly different definition of o-convergence appears: (z4)aca 0-converges to x € X if there is
a net (zq)aca such that z, | 0 and |z, — x| < 24 for all a. These two definitions agree in the
case of order bounded nets in Dedekind complete vector lattices (cf. |3, Remark 2.2|). The arti-
cle [6] contains a more details discussion of the definitions of o-convergence. By |7, Theorem 1]
(cf. also |8, Theorem 2|), o-convergence in X is topological iff X is finite dimensional.

A net ., in X is said to be uo-convergent to x if |z, — x| Ay = 0 for every y € X, . We write
To = x. Following Nakano [9], uo-convergence is investigated as a generalization of almost
everywhere convergence (see |3, 4, 10-18| and references therein). Note that o-convergence
agrees with eventually order bounded wo-convergence. Furthermore, uo-convergence passes
freely between X, X?, and X* [3, Theorem 3.2|. It was shown in [3, Corollary 3.5] that if e is
a weak unit of X then z, — & < |zq—z|Ae = 0. By [3, Corollary 3.12] every uo-null sequence
in X is o-null in X*. This is untrue for arbitrary nets. By Theorem 4 below, or independently,
by [18, Proposition 15.2], all wo-null nets in X are o-null in X* if only if dim(X) < oc.
Although uo-convergence is not topological in many important cases (e.g., in L1[0,1] and in
C0,1]), it is topological in atomic vector lattices; see |7, Theorem 2|.

A net z, is said to be o-Cauchy (uo-Cauchy) if the double net (x4 — 2s)(q,p) 0-converges
(uo-converges) to 0. Clearly, every o-Cauchy net is uo-Cauchy. In a Dedekind complete
vector lattice with a weak unit e, a net z, is uo-Cauchy iff inf, supg >, |25 — 24| Ae =0
[13, Lemma 2.7|. It is well known that completeness with respect to o-convergence is equivalent
to Dedekind completeness. By |3, Corollary 3.12|, a sequence in X is uo-Cauchy in X iff it
is o-convergent in X*“. As showed in Theorem 4, there is no net-version of the latter fact
unless X is finite-dimensional. It was proved in [16, Theorem 3.9] (see also |15, Theorem 28])
that X is o-universally complete iff X is sequentially uo-complete. In [15, Theorem 17|, it was
demonstrated that uo-completeness is equivalent to universal completeness. Thus, there is no
need in any special investigation of (sequential) uo-completion.

The (always complete) Boolean algebra B (X) of all bands of X is called the base of X. If X
has the projection property (e.g., if X is Dedekind complete), then B(X) can be identified
with the Boolean algebra (X)) of all band projections in X and, if X has also a weak unit e,
both B(X) and PB(X) can be identified with the Boolean algebra €(e) of all fragments of e
(cf. |2, Theorem 1.3.7(1)]).

2. Boolean-Valued Analysis and Unbounded Order Convergence

The classical Gordon’s discovery [19, Theorem 2| (expressing the immanent connection
between vector lattices and Boolean-valued analysis) reads shortly as follows: Each universally
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complete vector lattice is an interpretation of the reals R in an appropriate Boolean-valued
model VB). Furthermore, each Archimedean vector lattice is an order dense ideal of the
descent of R within V(). These facts are combined as follows (see |2, Theorems 8.1.2
and 8.1.6]):

Theorem 1 (Gordon’s Theorem). Let X be an Archimedean vector lattice, while B =
B(X) and R is the reals in the Boolean-valued model VB ThenR |isa universally complete
vector lattice including X as an order dense sublattice. Moreover,

br <by <= b<[z<y] (VbeB);(Vzx,yeR]).

By the Gordon Theorem, the universal completion X of an Archimedean vector lattice
X is the descent R | of the reals R in V(X)) and the uniqueness of X“ up to an order
isomorphism follows from the uniqueness of R in V(X)) (sce [2, 8.1.7]).

In [20] Kantorovich introduced Dedekind complete vector lattices and propounded his
famous Heuristic Transfer Principle: The members of every Dedekind complete vector lattice
are generalized reals (see [5] for further historical notes). This Kantorovich’s motto was justified
by the Gordon Theorem [19] published 42 years later in the same journal. The aim of the
present paper, published another 42 years after [19], is to provide another illustration of the
fruitfulness of the Gordon Theorem in exploring the theory of uo-convergence. To some extent,
Archimedean vector lattices are commonly presented in the repertoire of the Boolean-valued
orchestra, where the musicians are complete Boolean algebras and the orchestra director is
the reals. To our knowledge, the present paper is a first attempt to apply Theorem 1 to uo-
convergence. For the unexplained terminology and techniques of Boolean-valued analysis we
refer the reader to [2, 5, 19, 21-25].

Let us turn to wo-convergence in X. Passing to X“ = R |, which has the weak unit 1,
[1is the multiplicative unit of R] = 1 we have, by [3, Corollary 3.5],

To 250 = |2/ A120 (z,€X).

By [2, 8.1.4], for every net s = (Za)aca in R |, the standard name A" of A in V(B
(see [2, p. 401]) is also directed and (s 1) : A* — R is a net in R (within V(5)); moreover,

b< [lim(st) =2] < o—limx(b)os=x(b)z
for every b€ B =8(X) =B(R |) and every z € R | [2, 8.1.4(3)]. Thus,
To — T & 0— hlgn(\xa —z|AN1)=0 & HIXP(‘%‘ —z|A1) = Oﬂ = 1. (1)
In the case of a sequence, A =N, A* =N" = N |25, p. 330]), and hence
Tn 500 X = 1, 25 0in R | < [[ lim (yxn\m):oﬂ =1
N3n—o0

(2)

— [lim|z,| =0]=1 < =z, >0in R |= X"

Similarly,
T, is uo-Cauchy in X <= =z, is uo-Cauchy in R |
<= o— lim |xk—xm|/\1:O<:>[{ lim (|xk—xm|A1):Oﬂ:1
k,m—o00 N2=(NxN)"3(k,m)—00
= [[ lim  |og —om| = O]] =1 <= [z, is Cauchy in R]=1 3)
N3km—o0

— [FzeR)limz,=2]=1

— [limz, =z] =1, for somez € R | ;<= z, 2> 2€R |=X"
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The last equivalence in (3) is actually due to Gordon |19, Theorem 4] (see also [22]). Clearly, (3)
implies that X is always sequentially uo-complete. The equivalences of (2) are exactly the
first part of the following theorem (see |3, Corollary 3.12]), whereas (3) is its second part.

Theorem 2 (Gao—Grobler—Troitsky—Xanthos). A sequence x,, in an Archimedean vector
lattice X is uo-null in X iff x,, is o-null in X“; while x,, is uo-Cauchy in X iff x,, is o-convergent
in X",

The presented proof of Theorem 2 is based on the fundamental fact that the standard
name N* of the naturals is the naturals A" in V(5). It seems to be the main obstacle in
obtaining the net versions of this theorem which are indeed impossible due to Theorem 4.

The following theorem, stated and proved in [16, Theorem 3.9] and [15, Theorem 28|, is
a result of contributions of several authors (cf. also |3, Theorem 3.10|, |3, Proposition 5.7,
and [13, Proposition 2.8]).

Theorem 3. X is sequentially uo-complete iff X o-universally complete.

< For the “if part” we remark firstly that the fact that every (sequentially) uo-complete
vector lattice is (0-) Dedekind complete is already contained in the proof of |3, Proposition 5.7|.
Now, the (o-) lateral completeness of a (sequentially) uo-complete vector lattice follows from
the o-summability of every (countable) order bounded disjoint family in a (o-) Dedekind
complete vector lattice (cf. [2, 1.3.4]).

The “only if part” is exactly |3, Theorem 3.10]. >

It could be illustrative to present some Boolean-valued proof of Theorem 3 as well as
a Boolean-valued proof of Azouzi’s Theorem [15, Theorem 17| which yields the equivalence of
uo-completeness and universal completeness.

We conclude our paper with the following theorem which provides, among other things,
an answer to Azouzi’s question [15, Problem 23].

Theorem 4. Let X be an Archimedean vector lattice. Then the following are equivalent:
(1) dim(X) < oc;

(2) every uo-Cauchy net in X is eventually order bounded in X*;

(3) every uo-Cauchy net in X is o-convergent in X*;

(4) every uwo-null net in X is o-null in X*;

(5) every uo-null net in X is eventually order bounded in X",

(6) every uo-convergent net in X is eventually order bounded in X*;

(7) every uo-convergent net in X is eventually order bounded in X;

(8) every uo-convergent net in X o-converges in X“ to the same limit;

(9) every uo-convergent net in X" o-converges in X" to the same limit.

Before proving the theorem, we include the following modification of [13, Example 2.6|.
Given a nonempty subset A C X, pra stands for the band projection in X* onto the band
in X" generated by A.

EXAMPLE 1. In any infinite-dimensional Archimedean vector lattice X there exists a
uo-null net which is not eventually order bounded in X™".

As dim(X) = oo, there is a sequence e, of pairwise disjoint positive nonzero elements
of X. Let N? be the coordinatewise directed set of pairs of naturals. A net in X is defined via
T(nm) = (VM) - eppm. Since {x, ) : (n,m) € N2} C Bye, :keny and

(n’}igli)mpr{ek}(x(n,m)) = (n’}’ilgri)m(n v m)pr{ek}(en/\m) =0 (Vk € N),
then z,, ) 2% 0 as (n,m) — oo (e.g., it can be seen by use of [3, Corollary 3.5.] for a weak
unit u in X* s.t. uAey, = ey, for all k). If z(,, ,,,) is eventually order bounded by some y € X*,
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then for some (ng,mg) € N? we have y > Tnm)y (V(n,m) = (ng,mo)). Since n A mg = mg
and (n,mg) = (ng, mp) for n = ng V my, then

Y = T(nme) = (MY M0) - Cnamg = (RV M) - €mg =N - €y >0 (Y0 =ngVmg)

which is impossible. Therefore, the net z(, ) is not eventually order bounded in X™.

< PROOF OF THEOREM 4. (1) = (2), (4) = (5) & (6), and (7) = (6) are trivial.

(2) = (3): Suppose z,, is uo-Cauchy in X. Then x,, is uo-Cauchy in X" by |3, Theorem 3.2|,
because X is regular in X“. It follows from [15, Theorem 17] that z, — y for some y € X
Since z, is eventually order bounded in X by the assumption, then z, — .

(3) = (4) follows since every uo-null net is uo-Cauchy, o-convergent implies uo-convergent,
and the wo-limit of any wo-convergent net is unique.

(5) = (1) is Example 1.

(6) = (7) follows from the equivalence (6) < (1) because (1) = (7) is obvious.

(1) & (8) follows from the equivalence (1) < (4), since (8) is equivalent to the fact that
every uo-null net in X is o-null in X™.

(1) & (9) follows from (1) < (8) since (X*)* = X™ and dim(X) < oo iff dim(X") < co. >

While preparing this paper, we became aware of the still unpublished work [18] by Taylor
which provides the construction [18, Proposition 15.2| similar to Example 1. The equivalence
(1) & (8) of Theorem 4 is also contained in 18, Corollary 15.3|.
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Awnunoranusi. 3HaMeHnTasi TeopeMa ['OpIoHa SIBJISIETCSI €CTECTBEHHBIM HHCTPYMEHTOM JIJIsI TIOCTPOEHUST
YVHUBEPCAJILHOIO IOIOJTHEHHST apXUMEI0BOI BEKTOPHON pererku. OHA MO3BOJIsIET HAM yTOYHUTH HEKOTOPBIE
HeJIaBHUE Pe3YJIbTAThl O HEOTPAHUYIEHHON MOPsAAKoBOi cxomumocTtu. [Ipumensis reopemy 'opona, Mbr geMon-
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CTPUPYEM HECKOJBKO (PAKTOB O CXOAMMOCTH IOCTIEIOBAaTEIbHOCTEN. B wacTHOCTH, NPpUBOAMTCA 3dI€MEHTAD-
HOE JI0Ka3aTesIbcTBO TeopeMbl I'ao — I'pobisrepa — Tpourkoro — Xanroca 0 TOM, UTO IIOCIEIOBATEIHLHOCTH
B apXUMEJIOBOI BEKTODHOI DEIleTKe U0-CXOIUTCS K HyJIH0 (COOTBETCTBEHHO, SIBJISETCS u0-dyHIAMEHTAIBHON )
TOTJIa U TOJIBKO TOT/Ia KOTZa OHA MOPSIKOBO CXOAUTCS K HYJIIO (COOTBETCTBEHHO, sIBJISIETCS MOPSIKOBO CXOJI5-
1ieficsl) B yHUBEPCAJBLHOM IIONOJHEHNY 9TOH PeIIeTKU. B cTarbe aeTcsi NPOCTOe JO0KA3aTeIbCTBO U3BECTHOM
TEeOpeMBI O TOM, YTO apXMWMeJ0Ba BEKTOPHAs peIleTKa CEKBEHIIMAJIBHO UO0-IIOJIHA TOTJIa W TOJBKO TOr/Ja KO-
rjla OHa O-yHUBEPCAJIbHO HOoJHA. KpoMe TOro B cTaThe JIaeTcs IOJHOE PelleHre HefaBHeil mpobiembl A303u 0
KOHEYHOMEPHOCTH BCSIKOM apXMMeEIOBON BEKTOPHOI PEIIeTKN B KOTOPOi Jitobast uo-pyHIaMEeHTATbHAST TOCTIe-
JOBATEJIBHOCTH ITOPSIKOBO CXOJIUTCS B YHUBEPCAJIHLHOM ITOIIOJTHEHUN 3TOI pPereTKH.

KinoueBble cjioBa: HeOIpaHUYEHHAs MMOPSIKOBasi CXOAUMOCTh, PACIIUPEHHOE MPOCTpaHcTBO KanTopo-
BUYa, OyJIeBO3HAYHBIN aHAJINS.
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Abstract. Boolean valued analysis, the term coined by Takeuti, signifies a branch of functional analysis
which uses a special technique of Boolean valued models of set theory. The fundamental result of Boolean
valued analysis is Gordon’s Theorem stating that each internal field of reals of a Boolean valued model
descends into a universally complete vector lattice. Thus, a remarkable opportunity opens up to expand
and enrich the mathematical knowledge by translating information about the reals to the language of other
branches of functional analysis. This is a brief overview of the mathematical events around the Gordon
Theorem. The relationship between the Kantorovich’s heuristic principle and Boolean valued transfer
principle is also discussed.
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1. Introduction

In 1977, Evgeny Gordon, a young teacher of Lobachevsky Nizhny Novgorod State
University, published the short note [1] which begins with the words:

“This article establishes that the set whose elements are the objects representing reals
in a Boolean valued model of set theory V) can be endowed with the structure of a vector
space and an order relation so that it becomes an extended K-space* with base™ B. It is
shown that in some cases this fact can be used to generalize the theorems about reals to
extended K-spaces.”

His note has become the bridge between various areas of mathematics which helps, in
particular, to solve many problems of functional analysis in “semiordered vector spaces” [4]
by using the techniques of Boolean valued models of set theory [5].

(© 2019 Kusraev, A. G. and Kutateladze, S. S.

* A K-space or a Kantorovich space is a Dedekind complete vector lattice. An extended K-space is a uni-
versally complete vector lattice, cp. [2] and [3].

** The base of a vector lattice is the Boolean algebra of all of its bands [3].
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In the same year, at the Symposium on Applications of Sheaf Theory to Logic, Algebra,
and Analysis (Durham, July 9-11, 1977), Gaisi Takeuti, a renowned expert in proof theory,
observed that if B is a complete Boolean algebra of orthogonal projections in a Hilbert space H,
then the set whose elements represent reals in the Boolean valued model V® can be identified
with the vector lattice of selfadjoint operators in H whose spectral resolutions take values in B;
see [6].

These two events marked the birth of a new section of functional analysis, which Takeuti
designated by the term Boolean wvalued analysis. The history and achievements of Boolean
valued analysis are reflected in [7-9].

It should be mentioned that Dana Scott foresaw in 1969 [10] that the new nonstandard
models must be of mathematical interest aside from the independence proof, but he was
unable to give a really good evidence of this. In fact Takeuti found a narrow path whereas
Gordon paved a turnpike to the core of mathematics, which justifies the vision of Scott.

Boolean valued analysis signifies the technique of studying the properties of an arbitrary
mathematical object by comparison between its representations in two different Boolean
valued models of set theory. As the models, we usually take the von Neumann universe V
(the mundane embodiment of the classical Cantorian paradise) and the Boolean valued
universe V&) (a specially-trimmed universe whose construction utilizes a complete Boolean
algebra B with a top element 1). The principal difference between V and V® is the way
of verification of statements: There is a natural way of assigning to each statement ¢ about
z1,...,x, € VB the Boolean truth-value [¢(z1,. .. ,Zn)] € B. The sentence ¢(x1,...,xy) is
called true in VB if [¢(z1,...,2,)] = 1. All theorems of ZermeloFraenkel set theory with
the axiom of choice are true in V) for every complete Boolean algebra B. There is a smooth
and powerful mathematical technique for revealing interplay between the interpretations of
one and the same fact in the two models V and V®) . The relevant ascending-and-descending
machinery rests on the functors of canonical embedding X — X" and ascent X — X7 acting
from V into V) and descent X — X | acting from V® into V; see [7, §].

Everywhere below B is a complete Boolean algebra and V®) the corresponding Boolean
valued model of set theory; see [5, 11, 12]. We let := denote the assignment by definition,
while N, R, and C symbolize the naturals, the reals, and the complexes.

2. Kantorovich’s Heuristic Principle

The unexplained terms of vector lattice theory can be found in |2, 3, 13, 14|. All vector
lattices below are assumed to be Archimedean.

DEFINITION 1. A wector lattice or a Riesz space is a real vector space X equipped with a
partial order < for which the join x V y and the meet x Ay exist for all z,y € X, and such
that the positive cone Xy := {x € X : 0 < z} is closed under addition and multiplication
by positive reals and for any x,y € X the relations x < y and 0 < y — x are equivalent.
A band in a vector lattice X is the disjoint complement Y1 of any subset Y C X where
Yit={zeX: (VyeY)|z|Alyl =0} Let B(X) and P(X) stand for the inclusion ordered
sets of all bands and all band projections in X, respectively.

DEFINITION 2. A subset U C X is order bounded if U lies in an order interval |a,b] :=
{r € X: a <z <b} forsome a,b € X. A vector lattice X is Dedekind complete (respectively,
laterally complete) if each nonempty order bounded set (respectively, each nonempty set of
pairwise disjoint positive vectors) U in X has a least upper bound sup(U) € X. Note that
B(X) and P(X) are isomorphic Boolean algebras for such X. The vector lattice that is laterally
complete and Dedekind complete simultaneously is referred to as universally complete.
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DEFINITION 3. An f-algebra is a vector lattice X equipped with a distributive multipli-
cation such that if x,y € X then zy € X, and if x Ay = 0 then (az) Ay = (za) ANy =0
for all @ € Xy. An f-algebra is semiprime provided that xy = 0 implies x 1 y for all =
and y. A complez vector lattice X¢ is the complexification X¢:= X @iX (with ¢ standing for
the imaginary unity) of a real vector lattice X.

Leonid Kantorovich was among the first who studied operators in ordered vector spaces.
He distinguished an important instance of ordered vector spaces, a Dedekind complete vector
lattice, often called a Kantorovich space or a K-space. This notion appeared in Kantorovich’s
first fundamental article [15] on this topic where he wrote:

“In this note, I define a new type of space that I call a semiordered linear space. The in-
troduction of such a space allows us to study linear operations of one abstract class (those
with values in such a space) as linear functionals.”

Here Kantorovich stated an important methodological principle, the heuristic transfer
principle for K-spaces, claiming that the elements of a K-space can be considered as
generalized reals. Essentially, this principle turned out to be one of those profound ideas that,
playing an active and leading role in the formation of a new branch of analysis, led eventually
to a deep and elegant theory of K-space rich in various applications. At the very beginning
of the development of the theory, attempts were made at formalizing the above heuristic
argument. In this direction, there appeared the so-called tdentity preservation theorems which
claimed that if some proposition involving finitely many relations is proven for the reals then
an analogous fact remains valid automatically for the elements of every K-space (see [3, 4, 14]).
The depth and universality of Kantorovich’s principle were demonstrated within Boolean
valued analysis. See more about the Kantorovich’s universal heuristics and innate integrity of
his methodology in [16]. The contemporary forms of above mentioned relation preservation
theorems, basing on Boolean valued models, may be found in Gordon [17-19] and Jech |20, 21].

3. Boolean Valued Reals

Boolean valued analysis stems from the fact that each internal field of reals of a Boolean
valued model descends into a universally complete vector lattice. Thus, a remarkable
opportunity opens up to expand and enrich the mathematical knowledge by translating
information about the reals to the language of other branches of functional analysis.

According to the principles of Boolean valued set theory there exists an internal field of
reals R in V®) which is unique up to isomorphism. In other words, there exists R € V®) for
which [R is a field of reals] = 1. Moreover, if [ R is a field of reals] = 1 for some R’ € V(&)
then [the ordered fields R and R’ are isomorphic] = 1.

By the same reasons there exists an internal field of complexes C € V® which is unique
up to isomorphism. Moreover, V(&) EC=R®@iR. We call R and C is the internal reals and
internal complezes in VB,

The fundamental result of Boolean valued analysis is Gordon’s Theorem [1| which reads
as follows: FEach universally complete vector lattice is an interpretation of the reals in
an appropriate Boolean valued model. Formally:

Gordon Theorem. Let B be a complete Boolean algebra, R be a field of reals within V@),
Endow R:= R/] with the descended operations and order. Then

(1) The algebraic structure R is an universally complete vector lattice.
(2) The field R € V) can be chosen so that [R" is a dense subfield of R] = 1.
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(3) There is a Boolean isomorphism x from B onto P(R) such that

x(0)x = x(b)y <= b < [z =y],
x(b)x < x(0)y <= b< [z <y]
(r,y € R; beB).

The converse is also true: Fach Archimedean vector lattice embeds into an appropriated
Boolean valued model, becoming a vector sublattice of the reals (viewed as such over some
dense subfield of the reals). More details on the Boolean valued theory of vector lattices and
positive operators can be found in [7-9, 22].

Gutman [23] characterized those complete Boolean algebras B for which the internal fields
R” and R coincide: V®) |= R = R* if and only if B is the vector lattice o-distributive* if and
only if R] is locally one-dimensional**. He also proved that there exist nondiscrete locally
one-dimensional Dedekind complete vector lattice. Observe also some additional properties of
Boolean valued reals, multiplicative structure and complexification:

Corollary 1. The universally complete vector lattice R) with the descended multiplica-
tion is a semiprime f-algebra with the ring unity 1:= 1*. Moreover, for every b € B the band
projection x(b) € P(R) acts as multiplication by x(b)1.

Corollary 2. Let € be the complexes within V®). Then the algebraic system CJ
is a universally complete complex f-algebra. Moreover, C| is the complexification of the
universally complete real f-algebra R|; i. e., C| = R] @ iR|.

EXAMPLE 1. Assume that a measure space (£2,%, ) is semi-finite; i. e., if A € ¥ and
p(A) = oo then there exists B € ¥ with B C A and 0 < p(B) < oo. The vector lattice
LO(p):= L°(Q, %, n) (of cosets) of pu-measurable functions on (2 is universally complete if and
only if (Q,%, ) is localizable (= Maharam). In this event LP(£2, %, p) is Dedekind complete;
see [24, 241G]. Note that P(LY(2,%, 1)) ~ B/u~1(0). In [25], Scott observed that in the
algebra of random variables of a probability space (as in a Boolean structure) all Boolean
truth values of the axioms of the field of reals are 1.

ExXAMPLE 2. Given a complete Boolean algebra B of orthogonal projections in a Hilbert
space H, denote by (B) the space of all selfadjoint operators on H whose spectral resolutions
are in B; i. e., A € (B) if and only if A = [, AdE) and E) € B for all A € R. Define the partial
order in (B) by putting A > B whenever (Az,z) > (Bz,x) for all x € D(A) N D(B), where
D(A) C H stands for the domain of A. Then (B) is a universally complete vector lattice and
the Boolean algebras P((B)) and B are isomorphic.

If i is a Maharam measure and B in the Gordon Theorem is the algebra of all y-measurable
sets modulo p-negligible sets, then Z| is lattice isomorphic to L°(u); see Example 1. If B is
a complete Boolean algebra of projections in a Hilbert space H then Z| is isomorphic to (B);
see Example 2. The two indicated particular cases of Gordon’s Theorem were intensively and
fruitfully exploited by Takeuti |6, 26]. The object Z#. for the general Boolean algebras was
also studied by Jech [20, 21|, who in fact rediscovered Gordon’s Theorem. The difference is
that in [20] a (complex) universally complete vector lattice with unit is defined by another
system of axioms and is referred to as a complete Stone algebra.

* A Boolean algebra B is called o-distributive if for every double sequence (bn,m)n,men in B the following
equation holds: \/, cy A,uen Onym = /\cpENN V nen On,o(n) -

** A universally complete vector lattice G is called locally one-dimensional if all positive elements of G
are locally constants with respect to and arbitrary order unit 1, that is, every x € (G4 is reprentable as
€ = supgcz Aeme 1 for some numeric family (A¢)¢ez and a family (7¢)eez of pairwise disjoint band projections.
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4. Concluding Remarks

1. In 1963 Cohen discovered his method of forcing and also proved the independence of the
Continuum Hypothesis. A comprehensive presentation of the Cohen forcing method gave rise
to the Boolean valued models of set theory, which were first introduced by Scott and Solovay
(see Scott [10]*) and Vopénka [27|. In an extremely interesting and illuminating foreword to
Bell’s book [5] written by Scott, the development following Cohen’s discovery is characterized
as follows:

“It was in 1963 that we were hit by a real bomb, however, when Paul J. Cohen discovered
his method of ‘forcing’, which started a long chain reaction of independence results stemming
from his initial proof of the independence of the Continuum Hypothesis. Set theory could never
be the same after Cohen, and there is simply no comparison whatsoever in the sophistication
of our knowledge about models for set theory today as contrasted to the pre-Cohen era.”

Many delicate properties of the objects within V® depend essentially on the structure of
the initial complete Boolean algebra B. The diversity of opportunities together with a great
stock of information on particular Boolean algebras ranks Boolean valued models among the
most powerful tools of foundational studies. A systematic account of the theory of Boolean
valued models and its applications to independence proofs can be found in [5, 11, 12, 28].

2. Recal that ZF is Zermelo—Fraenkel set theory, AC and DC stand for the Aziom of
Choice and the Principle of Dependent Choice, respectively, ZFC=ZF+AC, and LM denotes
the sentence “Every set of reals is Lebesgue measurable.” Solovay, in his celebrated work [29],
proved the following result by constructing a model for ZF+DC+LM.

Theorem 1. If the existence of an inaccessible cardinal is consistent with ZFC, then

(1) The statement “Every subset of R definable by a countable sequence of ordinals is
Lebesgue measurable” is consistent with ZF.

(2) LM is consistent with ZF+DC.

Solovay then posed the famous problem: Does Theorem 1 remains true without assumption
of consistency of the existence of an inaccessible cardinal?

Solovay’s model have many interesting properties. For example, the Hahn-Banach theorem
fails in the model of Theorem 1, while it follows readily from DC for separable Banach
spaces [29, p. 3]. Moreover, in Solovay’s model each linear operator on a Hilbert space is
a bounded linear operator; see [30, Theorem 6].

3. Gordon came to his theorem, while trying to attack Solovay’s problem. He failed to
solve the problem but proved the following weaker statement; see |1, Theorem 7] and [31].

Theorem 2. The statement “The Lebesgue measure on R can be extended to a o-additive
invariant measure on the o-algebra of sets definable by a countable sequence of ordinals” is
consistent with ZFC.

In order to prove Theorem 2, he needed to consider the elements B,y € V® | where B is
a complete Boolean algebra with measure and

[(B, i) is a complete Boolean algebra with measure] = 1,

and identify in V the descent ul : Bl — RJ] of p as a vector measure on the complete
Boolean algebra B with values in RJ. The fact that BJ is a complete Boolean algebra that
contains B as a complete subalgebra was known from the paper [28] about the iterated forcing.

*There are many references in the literature to the Scott—Solovay unpublished paper “Boolean valued
models of set theory.” The reasons for this are discussed in the preface to the book [5].
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So, he considered the algebraic structure R| and proved that it is the extended K-space with
the base isomorphic to B. He learned about K-spaces from the book [32]|. Now, since B is an
algebra with measure, a real-valued measure on B can be produced by integration of elements

pd(b) € R for all b € BJ.

4. The Solovay problem was settled by Shelah [33]|, who showed that the assumption about
inaccessible cardinal cannot be removed from Theorem 1. More precisely, he proved that
ZF+DC+LM implies that wy is inaccessible in L, the universe of Godel constructible sets. It
is also worth mentioning that Sacks [34] obtained the following result without assuming the
existence of an inaccessible cardinal.

Theorem 3. The statement “The Lebesgue measure on R can be extended to the o-
additive invariant measure defined on all subsets of R” is consistent with ZF+DC.

In particular, Shelah’s result brings to light the importance of Theorems 2 and 3.

5. Two more remarkable independence results are worth mentioning here. We first recall
the following abbreviations:

SH (Souslin’s Hypothesis): Every order complete order dense linearly ordered set having
neither bottom nor top element is order isomorphic to the ordered set of the reals R, provided
that every collection of mutually disjoint nonempty open intervals in it is countable.

NDH (No Discontinuous Homomorphisms): For each compact space X, each homomor-
phism from C(X,C), the Banach algebra of all continuous complex-valued functions on X,
into arbitrary complex Banach algebra is continuous. NDH is equivalent to saying that every
algebra norm on C(X,C) is equivalent to the uniform norm.

The problem whether or not SH is true was posed by Souslin in 1920. The corresponding
problem for NDH dates back to the Kaplansky article of 1948.

Theorem 4. Both statements SH and NDH are independent of ZFC.

Tennenbaum [35] and Jech [36] both gave models in which SH is false. Solovay and
Tennenbaum [28| extended Cohen’s method to define models in which SH holds. The
consistency of “NDH is due to Dales and Esterly, while the consistency of NDH was proved
by Solovay and Woodin; see [37] for details. Thus, like the Continuum Hypothesis, SH and
NDH are undecidable on using the contemporary axioms of set theory.
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1. Introduction

The present paper contributes to mathematical finance by means of the tools of Boolean
valued analysis, a branch of functional analysis that applies special model-theoretic techniques
to analysis.

Let us start by explaining the mathematical finance problem that we are interested in.
Over the past two decades and having its origins in the seminal paper [1], duality theory of
risk measures has been an active and prolific area of research, see e.g. [2-12] and references
therein. The simplest situation is the case in which only two instants of time matter: today 0
and tomorrow 1" > 0. In this case, the market information that will be observable at time T
is described by a probability space (2,E,P). A risk measure is a function that assigns to
any E-measurable random variable x, which models a final payoff, a real number p(z), which
quantifies the riskiness of x. Generally speaking, duality theory of risk measures studies what

*The author was partially supported by the grants MINECO MTM2014-57838-C2-1-P and Fundacién
Séneca 20903/PD/18.
(© 2019 Zapata, J. M.
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are the desirable economic properties that should have a risk measure and which is the dual
representation of a risk measure with these properties.

A more intricate situation is when we have a dynamic configuration of time, in which the
arrival of new information at an intermediate date 0 < ¢ < T is taken into account. Suppose
that the available information at time ¢ is encoded in a sub-o-algebra F of the g-algebra £ of
general information. In that case, the riskiness at time t of any final payoff is contingent on
the information contained in F. Then a conditional risk measure is a mapping (fulfilling some
desirable economic conditions) that assigns to any final payoff, modeled by an £-measurable
random variable z, an F-measurable random variable p(z), which quantifies the risk arisen
from z. A problem that has drawn the attention for a long time is the dual representation
of a risk measure in a multi-period setup, see for instance [13-22| and references therein.

As explained in [23|, whereas classical convex analysis perfectly applies to the one-period
case, it has a rather delicate application to the multi-period model: consider the properties
of the conditional risk measure p such as convexity, continuity, differentiability and so on.
These properties have to be satisfied by the function x +— p(z)(w) for each w € €, but
they should be fulfilled under a measurable dependence on w, in order to enable a recursive
multi-period scheme. This approach would require heavy measurable selection criteria. These
difficulties have motivated some new developments in functional analysis. For instance,
Filipovic et al. [23] proposed to consider modules over L°(F), the space of (equivalence classes
of) F-measurable random variables (see also [19, 24, 25|). More sophisticated machinery
is provided in [26], where the so-called conditional set theory is introduced and developed.
Other related approaches are introduced in [27-29].

A step forward is given in [30], where it is established a method to interpret any theorem
of convex analysis as a theorem of L°-convex analysis. The machinery is taken from Boolean
valued analysis, a branch of functional analysis that consists in studying the properties
of a mathematical object by interpreting it as a simpler object in a different set-theoretic model
whose construction utilizes a Boolean algebra. Boolean valued analysis stems from the method
of forcing that Paul Cohen created to prove the independence of the continuum hypothesis
from the system of axioms of the Zermelo—Fraenkel set theory with the Axiom of Choice
(ZFC) [31]. The main tool of Boolean valued analysis are Boolean valued models of set
theory, which were developed by Scott, Solovay, and Vopénka as a way to simplify the Cohen’s
method of forcing. Boolean valued analysis started with Gordon [32] and Takeuti [33]*, and has
undergone a fruitful and deep development due to Kusraev and Kutateladze. For a thorough
account, we refer the reader to [34] and its extensive list of references.

The present paper is aimed to extend and exploit the connections provided in [30],
to establish a general transfer method between duality theory of one-period risk measures
and duality theory of conditional risk measures, putting at the disposal of mathematical
finance a powerful tool to obtain different duality representation results. Namely, we show
that if p: 2~ — LO(F) is a conditional risk measure, then we can interpret p as a one-period
risk measure p?T defined on a space of (classes of equivalence of) random variables 2™1 within
a suitable set-theoretic model. Then, inside of this model, any available theorem about the
dual representation of the one-period risk measure pt has a counterpart that is satisfied by
the conditional risk measure p. This means that any theorem of duality theory of one-period
risk measures gives rise to a new theorem of duality theory of conditional risk measures.

The paper is structured as follows: In Section 1, we give some preliminaries and review
duality theory of risk measures both in the one-period and multi-period setups. In Section 2, we

* Actually the term Boolean valued analysis was coined by Takeuti [33].



A Boolean Valued Analysis Approach to Conditional Risk 73

recall the basics of Boolean valued models. In Section 3, we establish a Boolean valued transfer
principle between duality theory of convex risk measures and duality theory of conditional
risk measures. By applying this transfer principle we derive a general robust representation
theorem of conditional risk measures and study different particular cases. Finally, in Section
4, due to limited space, we sketch the proof of the transfer method.

1. Preliminaries on Duality Theory of Risk Measures

In this section, we review the main elements of duality theory of risk measures. We start
by the one-period setup, recalling the notion of convex risk measure and different properties
that matter in the dual representation of a convex risk measure. After this, we move on to the
multi-period setup. We recall the notion of conditional risk measure and introduce conditional
analogues of the different elements of the one-period case.

1.1. One-period setup: convex risk measures. Let us recall some basics of duality
theory of risk measures. For an introduction to this topic, we refer the reader to [35, Chapter 4].
Let (2, &, P) be a probability space. We denote by L°(€) the space of E-measurable real-valued
random variables on (2 identified whenever their difference is P-negligible. Given x,y € L°(€)
we understand x < y and = < y in the almost surely sense. Endowed with the order <, L°(€)
is a Dedekind complete lattice ring. We say that lim, z,, = = a.s. in L%(&) whenever (z,)
converges almost surely to z € LY(&) (or equivalently, x,, order converges to ).

Suppose that our probability space (€2,&,P) models the market information at some
time horizon T > 0. The final payoff of each financial position is going to be modeled by
a subspace 2~ of L°(€) with the following properties:

e X is solid, that is, y € X and |z| < |y| imply that z € X';*

o Ep[|z|] < oo for any x € X;

e the classes of equivalence of constant functions are contained in X.

EXAMPLE 1.1. The following subspaces of LY(£) satisfy the properties above:

1. LP spaces: LP(€) := LP(Q,E,P) with 1 < p < 0.

2. Orlicz spaces: Let ¢ : [0,00) — [0,00] be a Young function, that is, an increasing left-
continuous convex function finite on a neighborhood of 0 with ¢(0) = 0 and lim,_,+ ¢(z) = co.
The associated Orlicz space is

L¢(5) = {x € LO(E): (3r € (0,00)) Ep[o(r|z|)] < oo}
3. Orlicz-heart spaces: If ¢ is a Young function, the associated Orlicz-heart space is
H?(E) = {x € LY(&): (Vr € (0,00)) Ep[p(r|z|)] < oo}

The riskiness of any final payoff x € X is quantified by a function p : X — R satisfying
for all z,y € X

1. Convezity: i.e. p(rz+ (1 —7)y) < rp(z) + (1 —r)p(y) for all r € R with 0 < 7 < 1;

2. Monotonicity: i.e. x < y implies p(y) < p(z);

3. Cash-invariance: i.e. p(x +r) = p(xz) —r for all r € R.
Such a function p is called a convex risk measure. The notion of convex risk measure was
independently introduced in [36] and [37] as a generalization of the notion of coherent risk
measure introduced in [1].

* Solid subspaces are also called order ideals.
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Associated to the model space X, we can consider a dual pair. Namely, the Kothe dual
space of X is defined by

X# = {ye L°€): zy € LY(E) for all z € X}.

Then X'7# is also a solid subspace of L'(£) with R ¢ X#. This gives rise to the dual pair
(X, X#) associated to the bilinear form (z,y) + Ep[zy] and the weak topologies o (X, X7)
and o (X7, X).

If X = LP(€) with 1 < p < o0, it is known that X% = LI(E), where ¢ := (1 — 1/p)~!
is the Holder conjugate of p, see e.g. |38, Example 29.4]. Suppose that ¢ is a Young function
and let ¢(r) := sup,-o{rs — ¢(s)} be the conjugate Young function of ¢. If X = L?(£), then
one has that X% = LY (&), see e.g. [39, 40]. If X = H?(£) and ¢ is finite-valued (otherwise
H?(E) = {0}), then X7 = LY(£), see e.g. [41].

The Fenchel transform of a convex risk measure p is defined to be

p7 (y) = sup {Eplzy] — p(z): x € X}.

Duality theory of convex risk measures is aimed to study when the Fenchel transform
is involutive. More precisely, given a convex risk measure p say that:

e p is representable if it admits the following dual representation:

p(z) = sup {Eplzy] — p¥(y): y € X*} forallz e X.

e p attains its representation whenever for any = € X there exists a y € X# such that

p(x) = Ep[zy] — o7 (y).

REMARK 1.1. We have that p*(y) < oo only if ¥ < 0 and Ep[y] = —1.* Thus p is
representable if and only if

p(z) = sup {Ep[zy] — p¥ (y): y € X%, y <0, Ep[y] = —1} forallz € X. (1)

Notice that an element y € L'(€) with y < 0 and Ep[y] = —1 can be identified with
a probability measure @, < P via the Radon-Nikodym derivative y = —=5*. The economic
interpretation of the representation (1) is that a convex risk measure can be seen as a stress
test of the financial position  among the different market models given by the probabilities @,
and the penalty function p#.

Next, we recall some properties that matter in duality theory of convex risk measures:

A function f from X to the extended real numbers R is said to be proper if f > —oo and
f(z) < oo for at least one x € X. Let f : X — R be proper. For any r € R, we define the
sublevel set

Vi(f) = {w € X: f(a) <1}
Say that:
e f has the Fatou property if

limz, =z as.,y € X, |x,| <y for all n € N implies liminf f(x,) > f(x);
n n

* Indeed, suppose that y € X# and fix n € N. Then p#(y) > Ep[nl{y>o3y] — p(nliyso}) = nEe[yt] — p(0).
Since n is arbitrary, p# (y) < oo only if y™ = 0. We also have that p? (y) > Ep[ny] — p(n) > n(Ee[y] +1) — p(0).
Being n arbitrary, we conclude that p™(y) < oo only if Ep[y] = —1.
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e f has the Lebesgue property if

limz, =z as., y € X, |z,| <y for all n € N implies lim f(x,) = f(x);

e fis law invariant if f(x) = f(y) whenever x and y have the same law (i.e. P(x < r) =
P(y < r) for each r € R);

e [ is lower semicontinuous w.r.t. o(X, X%), if V,.(f) is closed w.r.t. o(X, X#) for each
r € R;

o fis inf-compact w.r.t. o(X,X%), if V.(f) is compact w.r.t. o(X, X#) for each r € R.

1.2. Multi-Period Setup: Conditional Risk Measures. The notion of conditional risk
measure was independently introduced by [17] and [18]. Next, we recall the main elements
of duality theory of conditional risk measures. Namely, we adopt the module-based approach
introduced in |19, Section 3|.

Now, we suppose that F is a sub-cg-algebra of £, which models the available market
information at some future date ¢t € (0,7"). Let us introduce some notation. We denote
by LY (F), L% (F), and LO(F) the spaces of (classes of equivalence of ) F-measurable random
variables with values in the intervals [0, 00), (0, 00), and [—o00, 00], respectively.

Let F be the probability algebra associated to (£2, F,P), where F is defined by identifying
events modulo null sets. It is well-known that F is a complete Boolean algebra which satisfies
the countable chain condition (ccc), i.e. every family of positive pairwise disjoint elements
in F is at most countable. The 0 of F is represented by the empty set @ and the unity I of F is
represented by Q. We denote by p(I) the set of all partitions of I to F. Given a € F, we write 1,
for the class in L°(F) of the characteristic function 14 of some representative A € F of a. Given
a partition (ag)ken € p(I) and a sequence (z)ken, we define ) 1,4, xy 1= limy, Zle 1o,z a.s.

Classically, the conditional expectation Ep[-|F| is defined for elements with finite
expectation. We consider the extended conditional expectation. Namely, suppose that x €
LY(&) satisfies that at least one of lim, Ep[x™ A n|F] and lim, Ep[z~ A n|F] (a.s.) is finite,
then we define the extended conditional expectation of x to be

Ep[z|F] := lim Ep[z* A n|F] — lim Ep[z~ A n|F] € LO(F).

Now, our model space is an LY(F)-submodule 2~ of L°(€) which satisfies the following
properties:

e 2 is solid;

o Ep[|z||F] < oo for all x € 2,

o LN F)C Z;

o 2 is stable, that is, Y 14,z € Z whenever (a;) € p(I) and (z3) C 2.

EXAMPLE 1.2. The following L°(F)-submodules of L°(€) satisfy the properties above:

1. LP type modules (see [23]): We define

LE(E) = {z € LY(&): |z| < n, for some n € LO(F)},

if 1 <p<oo,let
LE(&) = {z € L%E): Ep [|z|"|F] < o0} .

2. Orlicz type modules (see [42|) and Orlicz-heart type modules: Let ¢ : [0,00) — [0, 00] be
a Young function and let

L?_-(E) = {z e L&) : 3n e LY (F)) Epp(n|z])|F] € LO(]:)} (Orlicz type module),
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H?;(E)::{:cELO(E) : (V€ LY (F)) Ep[p(n|z|)|Fle L°(F)} (Orlicz-heart type module).

Our model module 2" is going to describe all possible final payoffs of the positions at T'.

The riskiness at time ¢ of any financial position z € 2 is uncertain and contingent to
the information encoded in F. Thus the riskiness is quantified by a function p : 2~ — L°(F)
which satisfies:

1. LY(F)-convezity: p(nz + (1 — n)y) < np(z) + (1 — n)p(y) whenever n € L°(F) with
0<n<land z,y € Z;

2. Monotonicity: if x < y in 27, then p(y) < p(x);

3. LY(F)-cash invariance: p(z +n) = p(x) — n whenever n € L°(F), v € Z.
Such a function is called a conditional risk measure.

Dual systems of modules were introduced and studied in [43]. Associated to the model
space 2, we can consider a dual system of L(F)-modules. Namely, we define the Kdthe dual

LY(F)-module of % to be
X = {yeL’E):aye Ly(E) forallz e 27} .

It is simple to verify that 2 # enjoys the same properties as 2"; namely, 2 # is a solid
and stable LY(F)-submodule with LO(F) ¢ Z# c LL(€).

The dual system (2", 2'#) allows for the definition of the following module analogue of
the Fenchel transform:

p? (y) := sup{Ep[zy|F] — p(z): x € X} forye X7,

Again, we are interested in the involutivity of the Fenchel transform. Thus we introduce
the following nomenclature: Given a conditional risk measure p : 2~ — L°(F), say that:

e p is representable if

p(z) = sup{Ep[zy|F] — ,O#(y): Yy € %#} forall z € 2.

e p attains its representation if for any = € 2 there exists y € 2°# such that
p(x) = Eelzy|F] — p*(y).

REMARK 1.2. Due to [19, Corollary 3.14|, a conditional risk measure p is representable
if and only if

p(z) = sup {Ep[zy|F] — pT(y):ye Z*, y <0, Eply|F] = -1} forallz e 2.

Next, we will introduce some notions that are useful in the dual representation of a con-
ditional risk measure.

Given the dual system of LO(F)-modules (2, 2°#), we can define the so-called stable
weak topologies induced by (2", Z'#). Namely, given a partition (ax) € p(I), a family (Fy)
of non-empty finite subsets of 2°#, and e € LY | (F), we define

yEFL

U(Fk)7(ak)75 = {ﬂf € % Z 1ak sup |EP[$y|]:]| < 6}

The collection of sets

Bo (2 a#) = {x +Ury) (ar)e: TE€ X, (ar) € p(l), @ # F), C 27 finite, € € L9r+(]-')}
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is a base for a topology on 2", which will be denoted by o4(2, 2 #). Similarly, we define
os(X7,X).

Stable weak topologies were introduced in |43, 1.1.8| as the topology induced by the multi-
norm associated to a dual system of modules. Also, they are the transcription in a modular
setting of the conditional weak topologies introduced in [26].

A function f from 2" to LO(F) is said to be proper if f(x) > —oo for all x € 2 and
f(xg) € LO(F) for at least one xg € 2. Let f : 2~ — LO(F) be proper. For any n € L°(F),
we define the sublevel set

Vo(f) :={z € 27 f(z) <n}.

Say that:
e f has the Fatou property if

limz, =z as.,y € Z, |z, <y for all n € N implies liminf f(z,) > f(x);
e f has the Lebesgue property if
limz, =z as.,ye€ 2, |z, <y for all n € Nimplies lim f(z,,) = f(x) a.s;

e [ is conditionally law invariant is f(x) = f(y) whenever x and y have the same
conditional law (i.e. P(x < n|F) = P(y < n|F) for each n € LY(F));

e lower semicontinuous w.r.t. o5(2, Z#) if V,(f) is closed w.r.t. o5(2", 2'#) for every
n € L°(F).

Next, we will recall some notions that we will be needed later.

e A non-empty subset S of L°(&) is stable if Y 14,2, € S whenever (z;) C S and
(ax) € p(I).

e A collection Z of non-empty subsets of L(&) is said to be stable if for any sequence
(Sk) of members of # and any partition (ax) € p(I) one has

Z 1o, Sk = {Z lo,xp: oy € Sy, for all k‘} €A
k

o A stable filter base is a filter base % on L°(€) such that 4 is a stable collection consisting
of stable subsets of L°(€).

e A non-empty subset S of 2" is stably compact with respect to o4(2Z, Z#), if S is stable
and any stable filter base % on S has a cluster point = € S w.r.t. os(2, Z 7).

e A proper function f: .2 — LO(E) is said to be stably inf-compact w.r.t. o,(2 , Z#) if
V,,(f) is stably compact w.r.t. o5(2", 2°#) for every n € LY(F) such that V,(f) # @.

The notion of stability is crucial in some related frameworks. In Boolean valued analysis it
is used the terminology cyclic or universally complete A-sets (here A is any complete Boolean
algebra, for instance we can take A = F), see [34]. In particular, in the case of dual systems
of modules this notion was introduced in [43].

In conditional set theory it is used the terminology stable set and stable collection, see |26].
Actually, the notion of conditional set is a reformulation of that of cyclic A-set. However,
it should be mentioned that conditional set theory provides us with an intuitive and useful
tool for dealing with A-sets and their Boolean valued representation. In theory of L°-modules
the notion of stability is called the countable concatenation property, see [25].
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Stable compactness was first time studied by Kusraev [44] under the name of cyclic
compactness. The notion of stable filter base and stable compactness were defined in [26].
The transcriptions of these notions in L°-modules are studied in [45].

2. Foundations of Boolean Valued Models

The precise formulation of Boolean valued models requires some familiarity with the
basics of set theory and logic, and in particular with first-order logic, ordinals and transfinite
induction. For the convenience of the reader, we will give some background of this theory. For
a more detailed description we refer the reader to [34].

Let us consider a universe of sets V satisfying the axioms of the Zermelo—Fraenkel set
theory with the axiom of choice (ZFC), and a first-order language £, which allows for the
formulation of statements about the elements of V. In the universe V' we have all possible
mathematical objects (real numbers, topological spaces, and so on). The language £ consists
of names for the elements of V' together with a finite list of symbols for logic symbols (¥, A,
— and parenthesis), variables and the predicates = and €. Though we usually use a much
richer language by introducing more and more intricate definitions, in the end any usual
mathematical statement can be written using only those mentioned. The elements of the
universe V are classified into a transfinite hierarchy: Vp c Vi c Vo C ---V, C Vyy1 C -+,
where Vy = @, Voy1 = P(V,) is the family of all sets whose elements come from V,, and
Vs = Uqs<p Va for limit ordinal j.

The following constructions and principles work for any complete Boolean algebra A,
even if it is not associated to a probability space or even does not have the countable chain
condition. However, for the sake of simplicity, we will consider our underlying probability
algebra A := F, which encodes the future market information.

We will construct V| the Boolean valued model of A, whose elements we interpret as
objects which we can talk about at the future time t. We proceed by induction over the class
Ord of ordinals of the universe V. We start by defining VO(A) = @. If a + 1 is the successor
of the ordinal «, we define

Vofﬁ = {u: u is an A-valued function with dom(u) C VOSA)} .

If o is a limit ordinal Vo™V := (J VY. Finally, let VO .= (J V&Y.
(<a aceOrd

The idea is that any member v of the class V) is a fuzzy set in the sense that, for
v € dom(u), v will become an element of u at the future time ¢ if u(v) happens. Given u
in VA we define its rank as the least ordinal o such that w is in Vogﬂ

We consider a first-order language which allows us to produce statements about V.
Namely, let £ be the first-order language which is the extension of £ by adding names for
each element in VY. Throughout, we will not distinguish between an element in V) and
its name in £, Thus, hereafter, the members of V() will be referred to as names.

Suppose that ¢ is a formula in set theory, that is, ¢ is constructed by applying logical
symbols to atomic formulas v = v and u € v. If ¢ does not have any free variable and all
the constants in ¢ are names in VA then we define its Boolean truth value, say [¢], which
is a member of A and is constructed by induction in the length of ¢ by naturally giving
Boolean meaning to the predicates = and €, the logical connectives and the quantifiers.
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We start by defining the Boolean truth value of the atomic formulas v € v and u = v
for v and v in VA, Namely, proceeding by transfinite recursion we define

[uev]= \/ o)Alt=u],

tedom(v)

[u=v]= A (@t =[ecol)r N (@) =[teu]),

tedom (u) tedom(v)

where, for a,b € A, we denote a = b := a® V b. For non-atomic formulas we have

[Ba)e@)] =\ [p@] and [(Va)e@)]:= /\ [p)];

u€V (A ueV (A

[evyl :=Tel VL], Tend]l=lel AW =] =10l VIY], [-¢] = el

(A and write V(A = ¢, whenever it is true

We say that a formula ¢ is satisfied within V'
with the Boolean truth value, that is, [¢] = I.

We say that two names u,v are equivalent when [u = v] = I. It is not difficult to
verify that the Boolean truth value of a formula is not affected when we change a name by
an equivalent one. However, the relation [u = v] = I does not mean that the functions u
and v (considered as elements of V') coincide. For example, the empty function u := & and
the function v : {@} — A v(@) := 0 are different as functions; however, [u = v] = I. In order
to avoid technical difficulties, we will consider the so-called separated universe. Namely, let
V(A) be the subclass of V) defined by choosing a representative of the least rank in each
class of the equivalence relation {(u,v): Ju =v] = I}.

The universe V can be embedded into V). Given a set z in V, we define its canonical
name # in V) by transfinite induction. Namely, we put & := & and for z in V we define &

(A)

to be the unique representative in V" of the name given by the function

{g:yez}— A gy~ I
Given a name u with [u # @] = I we define its descent by
ul = {v e 7, [veu] =1I}.

V) is a model of ZFC. More precisely we have:
Theorem 2.1 (TRANSFER PRINCIPLE). If ¢ is a theorem of ZFC, then VA = .
Other two important principles are the following:

Theorem 2.2 (MAXIMUM PRINCIPLE). Let ¢(z1,...,2,) be a formula with free
variables x1,...,x,. Then there exist names ui,...,u, such that [e(ui,...,u,)] =

[(Bz1)... zp)e(zi, ..., z0)]-

Theorem 2.3 (MIXING PRINCIPLE). Let (ay) € p(I) and let (uy) be a sequence of names.
Then there exists a unique member u of VY such that [u = ug] > ay for all k € N.

Given a partition (ar) € p(I) and a sequence (uy) of elements of V) we denote
by > ugag, the unique name u in v satisfying [u = uy] > ay, for all k € N,

The following result is very useful to manipulate Boolean truth values:



80 Zapata, J. M.

Proposition 2.1. Let ¢(x) be a formula with a free variable z and v a name with

[v+# @] = 1. Then:

[(Vz e v)p@)] = A el [Bzev)p@]=\ lpw]

ucvl uevl

Moreover, one has

1. [(Vx € v)p(x)] = I if and only if [p(u)] = I for all u € vl;

2. [(3z € v)p(x)] = I if and only if there exists u € v] such that [p(u)] = I.

In general, in the universe V) we have all possible mathematical objects (real numbers,
topological spaces, and so on). If u is a name which satisfies Ju is a function] = I, that is, u
satisfies the definition of function in the language £, then we say that u is a name for a
function. Of course, this can be done for any mathematical concept. Thus, in the sequel of

this article, we will use the terminology name for a vector space, name for a topology, and so
on without further explanations.

DEFINITION 2.1. Suppose that u,v are two names with [(u # @) A (v # @)] = 1. A
function f : ul — vl such that

[w=t] <[f(w)=f(t)] forall w,teul

is called extensional.

Extensional functions allows for the definition of names for functions. More precisely, we
have the following:

Proposition 2.2. Let u, v be names with [(u # &) A (v # @)] = I and suppose that
f :ul — vl is an extensional function. Then there exists a name f1 for a function from u
to v, such that [f1(t) = f(t)] = I for all t € ul.

3. A Transfer Principle Between Duality Theory of Convex Risk Measure
and Duality Theory of Conditional Risk Measures

Let us go back to our model probability space (2,&,P) with F C £. Next, we state the
main result of the present paper, which allows for the interpretation of a conditional risk
measure p : 2 — L°(F) as a name for a convex risk measure, let us say pt, defined on some
space of random variables, and relates the properties of p with the properties of pt in the
set-theoretic model V. In other words, this result establishes a transfer principle between
duality theory of convex risk measures and duality theory of conditional risk measures.

Theorem 3.1. Let p : & — L%F) be a conditional risk measure. Then there exist
members p 1 and 21 of VA such that

VA = there exists a probability space (X, %, Q) such that,
21 is a solid subspace of L}(X) with R ¢ 271,

and p1: 2T — R is a convex risk measure,

and so that the names p T and 21 satisfy the following:
1. p is representable iff [p1 is representable] = I.
2. p attains its representation iff [p? attains its representation] = I.

3. p has the Fatou property iff [pT has the Fatou property] = I.
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4. p has the Lebesgue property iff [p1 has the Lebesgue property] = I.
5. p is conditionally law invariant iff [p1 is law invariant] = I.
6. p is lower semicontinuous w.r.t os(2", 2 7) iff
[p1 is lower semicontinuous w.r.t. o(2 1, Z17)] = I.
7. p¥ is stably inf-compact w.r.t og( 2% X iff
[p1# is inf-compact w.r.t. o( 217, 2 1)] =
8. If ' = L%(€) with 1 < p < oo, then [Zt = LP(X)] = 1. In hat case, % = LL(E)
where q is the Holder conjugate of p.
9. If & = L?E(é’) with ¢ a Young function, then there is a name ¢ for a Young function

such that [21 = L?(X)] = I. In that case, 27" = Lﬁ(é’) where 1) is the conjugate Young
function of ¢.

10. If & = H?i-(é’) with ¢ a finite-valued Young function, then there is a name qg for a

finite-valued Young function such that [2°1 = H?(X)] = I. In that case, 2% = L?_-(E) where
1 is the conjugate Young function of ¢.

The proof of the theorem above is postponed to next section. Instead, we focus first
on some instances of application.

Theorem 3.1 together with the transfer principle of Boolean-valued models allow for the
interpretation of well-known results about the dual representation of convex risk measures
as new theorems about the dual representation of conditional risk measures.

For example, suppose that p : X — R is a convex risk measure. As a consequence of the
Fenchel-Moreau theorem (see [11, Theorem 2.1]) applied to the weak topology o (X, X#) we
have that p is representable if and only if p is lower semicontinuous w.r.t. o(X, X#).

Moreover, we have the following dual representation result:

Theorem 3.2 [41, Theorem 1.1|. Let p : X — R be a convex risk measure. Then p
is representable if and only if p is lower semicontinuous w.r.t. o(X,X#). In that case, the
following statements are equivalent:

1. p attains its representation;

2. p has the Lebesgue property;

3. p* is inf-compact w.r.t. o(X%, X).

Let ¢ denote the theorem above. Due to the transfer principle, it is satisfied that [¢] = I.
In view of Theorem 3.1, we have that the statement below is just a reformulation of [¢] = I,
so no proof is needed.

Theorem 3.3. Let p : 2 — L°(F) be a conditional risk measure. Then p is representable,
ie.

p(x) = sup {Eplzy|F] — p*(y) : y € 2%, y <0, Eply|F] = —1}  forallwe 2
if and only if p is lower semicontinuous w.r.t. os(2 , Z7).

In that case, the following are equivalent:

1. p attains its representation, i.e. for every x € 2 there exists y € 2% with y < 0 and
Eely|F] = —1 such that p(z) = ElaylF] - p*(y):

2. p has the Lebesgue property;

3. p** is stably inf-compact w.r.t. o (2%, Z).

Suppose that X = L°(E). Then, the so-called Jouini-Schachermayer—Touzi theorem

(see |46, Theorem 2| and for its original form see [10]) asserts that in Theorem 3.2 we can
replace the lower semicontinuity by the Fatou property.* Thus, the transfer principle together

* Actually, the Fatou property is automatically satisfied when p is law invariant, see [10].
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with Theorem 3.1 yields the following:

Theorem 3.4. Let p : L¥(E) — L°(F) be a conditional risk measure. Then p has the
Fatou property if and only if it admits a representation

p(x) = sup {Ep[zy|F] — p*(y) : y € LX(E), y <0, Eply|F] = —1} forallz e 2.

In this case, the following are equivalent:

1. p attains its representation;

2. p has the Lebesgue property;

3. p* is stably inf-compact w.r.t. o5(L%(E), L¥(E)).

Suppose that X = LP(£) with 1 < p < oco. In this case, every convex risk measure has
the Lebesgue property, is representable and the representation is attained for every z € LP(E)
(see eg |11, Theorem 2.11]). Thus, we have:

Theorem 3.5. Suppose that (p,q) are Hélder conjugates with 1 < p < oo. If
p: LE(E) — LO(F) is a conditional risk measure, then p has the Lebesgue property, and
for every x € L%(E) there exists y € L%(E) with y < 0 and Eply|F] = —1 such that
p(z) = Eplay|F] — o7 ().

If X := L?(€) with ¢ a Young function, due Theorem 3.1 we have that X := L?(£) and
applying Theorem 3.3 we have the following:

Theorem 3.6. Let (¢,v) be Young conjugate functions and p : LfT(E) — LY(F)
a conditional risk measure. Then p is representable, i. e.

p(z) = sup{Ep[zy|F] — p7 (y): y € L%(E), y <0, Ep[y|F]=—-1} forallx € &

if and only if p is lower semicontinuous w.r.t. o (L?_-(E), L}p_-(é’))

In that case, the following are equivalent:

1. p attains its representation;

2. p has the Lebesgue property;

3. p** is stably inf-compact w.r.t. JS(L%(E),L?_-(E)).

If X := H?(&) with ¢ finite-valued, then every convex risk measure on H?(£) has the
Lebesgue property, is representable and the representation is attained for every x € H?(&)
(see eg [6, Theorem 4.4]). Thus, we have the following:

Theorem 3.7. Let (¢,v) be Young conjugate functions with ¢ finite-valued and
p: H}?-(E) — L%(F) a conditional risk measure. Then, p has the Lebesgue property, and
for every x € Hﬁ(é’) there exists y € Lﬁ(é’) with y < 0 and Eply|F] = —1 such that
p(z) = Ep[zy|F] — p¥ (y).

Note that all these theorems are just some examples: we can state a version of any
theorem ¢ on duality theory of convex risk measures and it immediately renders a version for
conditional risk measures of the form [¢] = I.

Also, we would like to point out that the relations in Theorem 3.1 can be easily increased.
Moreover, it is also possible to cover more general cases: conditional risk measures with values
in LO9(F,R U {+00}), quasi-convex conditional risk measures and so on.

4. Sketch of the Proof of the Main Result

For saving space, we will give only a sketch of the proof of Theorem 3.1. A more detailed
exposition can be found in [47, Chapter 4].
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The set of real numbers is a definable notion of ZFC. We will denote by R 4 the unique
)

that satisfies the definition of real numbers, which exists due to the transfer and

)

name in V(A
maximum principles. Likewise, we will denote by N 4 the unique name in V(A which satisfies
the definition of natural numbers.

It is well-known that L°(F) is a Boolean valued interpretation of the real numbers, see [33,

Chapter 2, Section 2|. More precisely, we can state this fact as follows: there is a bijection

1o LY(F) — Ral
no o

[e)

u < u

such that the following is satisfied:

(i) «(L°(F,N)) = N4l and (3 1a,nk)® = . fgax whenever (ng) C N and (ax) € p(I);*

(i) [0° = 0] = I, [1* = 1] = I, [9* + € = (n+€)°] = I and [°¢* = (€)"] = I for al
n.§ € LO(F);

(iii) [n* = €] = V{a € A: 1,n = 1,§} and [n® < €°] = V{a € A: 1,n < 1,&} for all
n.§ € LO(F);

(iv) (3 Laym)® = > mpay for each (ng) € LO(F) and (ag) € p(I).

Now, write R4 for the unique name in VY that satisfies the definition of the extended

real numbers. Using the same techniques as in 33| it can be proved that the function 2 extends
to a bijection

7 LO(F) = Ral, nen°

such that
[7*=¢]= \/{a € A: 1an = Lo}

where, by convention, we take above 0 - (£00) = 0.
Suppose that (n,) is a sequence in LO(F). Then, we define (nn)nero(r,n) Where 7, =
> ken Lin=k}k- Then the function

Nal = Rul, n® =g,
is extensional. Due to Proposition 2.2, we can find a name v with Jv : N — R] = I such that
[ = o(®)] =1,

for all n. Moreover, we have the following:

Proposition 4.1 [48, Proposition 2.2.1]|. If (1,) is a sequence in L°(F), then
[(liminfn,)® =liminfnr.] =1 and [(limsupn,)® = limsupny.] = I.
n n n n
In particular, lim,, n, = n a.s. if and only if [lim, n%. =n*] = I.

Suppose that (X, 3, Q)4 is a name for a probability space.”™ We can consider the name
LY(X) 4 for the space of classes of equivalence of random variables with finite expectation.

* As usual, L°(F,N) denotes the set of classes of equivalence of N-valued measurable functions.
**That (X,X,Q).4 is a name for a probability space means that X is a name for a set, ¥ is a name for
a o-algebra on X, @ is a name for a probability measure on ¥, and (X, 3, Q)4 denotes the corresponding

ordered triple within V(A).
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Gordon [49, Theorem 5| proved that the conditional expectation Ep[-|F] from L'(€)
to L1(F) is a Boolean valued interpretation of the name for the expectation Eg[] for some
probability measure Q within V(4. We state this fact in the following proposition, whose
self-contained proof can be found in [47, Section 4.1].

Proposition 4.2. There exists a name (X, X, Q) 4 for a probability space and a bijection

g0 LY(E) — LY (D)4l
T — z*®

o

u <— u

such that:
1. 7 extends the canonical isomorphism 1;

[Ep[z|F]* = Eg[z°®]] = I for all x € L%(&);

[z* =y*] = V{a € A: 1,2 = 1,y} for all z,y € LL(E);

[z* < y*] = V{a € A: 1,2 < 1.y} for all z,y € LL(E);

[z* + y*] = [(z + y)*] for all z,y € LL(&);

(X Lazk)® =Y atay for all (zy) C LY(E) and (ax) € p(I).

For the forthcoming discussion, we will fix a name for a probability space (X,%,Q)4

as in the theorem above.
Suppose that S is a stable subset of L}E(S). Let ST denote the unique representative

SR AN ol o O

in V(A) of the name given by the function
{z*:2e8S} — A, 2z2°—1

Using the mixing principle, it is not difficult to prove the following:

Proposition 4.3. If S is a stable subset of L}E(S), then ST is a name for a non-empty
subset of L}_-(E)T, and the map x — x® is a bijection from S to ST|. In particular, we have
that [LE(E)r = LY (Z)4] = I.

Both 2 and Z# are stable subsets of L}E(S). Thus, it makes sense to define 2™1 and
Z #4, which are the names that we refer to in the statement of Theorem 3.1. Indeed, bearing
in mind the properties given in Proposition 4.2, a standard manipulation of Boolean truth
values proves the following:

Proposition 4.4. 21 and 2 #1 are names for solid subspaces of LL(&E)t with
[Rc 24] =1 and [R ¢ Z#4] = I. Moreover, [Z#1 = Z1#] =1.

If p is a real number with 1 < p < oo, we have that its canonical inversion, p in V(A),
satisfies that [p = p] = I. Then we can consider the corresponding name, say LP(X) 4, for a LP
space within VA,

Given a Young function ¢, consider the function n — ¢(n): L°(F,[0,00)) — L°(F, [0, c]).
Due to Proposition 2.2, we have a name qg for a Young function. Then we can consider the
corresponding names for an Orlicz space and an Orlicz-heart space within V)| say L?(2) 4
and H?(X) 4, respectively.

The following result tells us that LP, Orlicz and Orlicz-heart type modules can be
interpreted as classical L?, Orlicz and Orlicz-heart spaces within V). Actually, general LP
type modules LP(®) where ® is a Maharam operator were introduced and their Boolean valued
interpretation was provided in [43, 4.2.2]. In fact, a Maharam operator can be viewed as an
abstract conditional expectation, see [50, Sections 5.2-5.4|; moreover, if ® is the conditional
expectation, then LP(®) is precisely L-(E).
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By manipulation of Boolean truth values, and bearing in mind the properties given in
Proposition 4.2, we can check the following:

Proposition 4.5. If 1 < p < oo, then [L%(E)1 = LP(X) 4] = 1. If ¢ is a Young function,
then [LE(E)T = L?(2) 4]  and [HA(E) = HOS)Al = T

Suppose that (z,,) is a sequence in LY(€). For each n € L%F,N) we define z, :=
> ken Lin=k} Tk Then the function

4
Ho(%

Nal — LY, n® w20

is extensional. Due to Proposition 2.2 we can find a name (z,)1 for a sequence in LL-(E)1.
In addition, a standard manipulation of Boolean truth values proves the following:

Proposition 4.6. Let (z,,) be a sequence in 2 such that |z, | < y for some y € Z . Then
[(liminf, z,)® = liminf, 23.] = I and [(limsup, x,)® = limsup, x5.] = I. In particular,
lim, z, =z a.s. in 2 if and only if [lim, z5. = z* a.s. in Z1] = I.

A function f : 2 — LO(F) is said to have the local property if 1,f(z) = 1of(1qz) for
all a € A and x € 2. It is not difficult to verify that if f has the local property, then the
function

21— Ral, 2 f(2)",

is extensional. Thus, we can find a name f71 for a function from 21 to R4 such that

[ft(z®) = f(x)*] =1 forall z € 2.

The following is a consequence of Propositions 4.1:

Proposition 4.7. Let f : 2" — LO(F) be a function with the local property. Then

1. f has the Fatou property iff [ f1 has the Fatou property] = I;

2. f has the Lebesgue property iff [f1 has the Lebesgue property] = I.

Proposition 2.1 together with the fact that = — x*® is a bijection from S to S1| allows us
to prove the following:

Proposition 4.8. Let S C 2" be stable, let f : 2° — LY(F) be a function with the local

property. Then .
[[sup F1(u) = (supf(w)> ﬂ 3
ueSt €S

Suppose that & is a stable collection consisting of stable subsets of L}_-(E ).

Let %1 denote the unique name in V(A) equivalent to the name given by the function
{§1:SeB} — A St I

By means of a manipulation of Boolean truth values using the mixing principle, one can
prove the following:

Proposition 4.9. Let % be a stable collection consisting of stable subsets of L%(E).
Then %1 is a name for a non-empty collection of non-empty subsets of L}E(é’)T, and the map
S — S7 is a bijection from % to B1l.

Notice that both By g%y and B g4 4 are stable collections. Then it makes sense
to define B9 g4\t and B g4 o1

Dual systems of modules were introduced and studied in [43]. In addition, their Boolean
valued representation can be found in [43, Theorem 3.3.10|, which covers the stable weak
topologies. Actually, we have the following result, which can be also proved by adapting the
proof of [47, Proposition 2.3.20]:
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Proposition 4.10. By g4It (resp. By# o)1) is a name for a topological base of the
weak topology (21, Z'#1) (resp. o(2 17, 2'1)) within VA,

Next, we deal only with the topology o4(2°, 2" %), but the following results are also valid
for the topology os(Z %, 2°).

The next proposition can be proved by manipulation of the Boolean truth values as in [47,
Proposition 2.3.4| and [47, Corollary 2.3.1].

Proposition 4.11. Let S be a stable subset of 2. Then:

1. S is open w.r.t. o,(2°, 2 7) iff [S1 is open w.r.t. (21, Z71)] = I;

2. S is closed w.r.t. os(Z, Z#) iff [ST is closed w.r.t. o( 21, Z#1)] = I;

3. S is stably compact w.r.t. o,(2 , Z %) iff [S1 is compact w.r.t. o(2 1, Z7#1)] = I.

As a consequence of the previous result and by means of a manipulation of the Boolean
truth values as in [47, Proposition 2.3.11], we obtain the following:

Proposition 4.12. Let f : 2" — L(F) be a function with the local property. Then:

1. f is lower semicontinuous w.r.t. o,(2 , 2 %) iff
[f is lower semicontinuous w.r.t. o(21, Z#1)] = I;

2. f is stably inf-compact w.r.t. o,(2 , 2 7) iff
[f is inf-compact w.r.t. o( 271, Z#1)] = I

At this point, we can already prove Theorem 3.1. Namely, suppose that p : 2~ — L(F)
is a conditional risk measure. Since p is L(F)-convex, we know from [23, Theorem 3.2] that
p has the local property. Then, we have a name ptT for a function from 21 to R4 such
that [pT(z®) = p(z)*] = I for all x € Z". Moreover, it can be computed that pt is a name
for a convex risk measure.

We also have that p# has the local property; thus, we can find a name p#1 for a proper
function from 2% to Ry so that [p71(y*) = p*(y)*] = I for all y € Z#. In addition, as
a consequence of Proposition 4.8, one has that [p71 = pT#]] =1

Finally, note that 1 in Theorem 3.1 is a consequence of Proposition 4.8; 2 in Theorem 3.1
is clear from Proposition 4.2; 34 in Theorem 3.1 is precisely Proposition 4.7; 5 in Theorem 3.1
is clear from Proposition 4.2; 67 in Theorem 3.1 is just Proposition 4.12; and finally we obtain
8-10 in Theorem 3.1 from Proposition 4.5.
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MATHEMATICAL LIFE

I. I. GORDON WHO WAS AN ADRESSEE
OF L. S. PONTRYAGIN* (INTRODUCTORY NOTES)

E. I. Gordon”

I put before the readers the letters of the eminent mathematician academician Lev
Semenovich Pontryagin to my father Izrail Isaakovich Gordon. These letters were written
between 1937 and 1969, and contain many interesting facts, pertaining not only to the history
of mathematics but also to Russian life during that period. That is why these letters are—
I think—of interest not only from the point of view of the history of mathematics, but also as
a true-to-life account of the relevant period.

It is well known that L.S. lost his sight at age 13. He did not use the alphabet for the blind
and typed his papers on an ordinary typewriter. Hence there are many grammatical mistakes
in the original letters. Of course, these mistakes have been corrected in the printed versions
of the letters.

The purpose of my introductory remarks is to tell about the recipient of Pontryagin’s
letters and about other people and events mentioned in them. Since the letters cover a very
long period, it is not surprising that, in time, the relation of L.S. to various people mentioned
in the letters changed. Sometimes he makes very harsh statements about some people. As a
rule, such statements reflect momentary states of mind rather than his considered view of the
people in question and characterize his way of speaking. The letters are uncut printed versions
of the originals.

LLI. was the first graduate student of L.S. He entered graduate school in 1932 and
graduated in 1935. The small age difference between student and teacher (two years) and
their youthfulness helped them to become close friends. (It is well known that at 24 L.S.
was already a world-famous mathematician.) Their friendship continued until 1969. During
all this time they wrote letters to one another. Only three of Pontrygin’s letters from the
period before WWII have survived. Apparently, this is due to the fact that I.I. and his family
were evacuated from Voronezh to Kazakhstan and their house in Voronezh was completely
destroyed during the war. I have a copy of a single letter of I.I. to L.S. (This letter contained
a question on the proof of the well-known Andronov—Pontryagin theorem, which arose when
he was writing the book [12]. According to I.I. quick answer by L.S. allowed to overcome his
difficulties).

* The letters of L. S. Pontryagin to I. I. Gordon, Ibid, p. 27-208.

© 2019 Gordon E. I.

#Gordon E. 1. (2005) I. I. Gordon who was an addressee of L. S. Pontryagin (Introductory notes). Istorico
Matematicheskie issledovanija (Investigations in the history of Mathematics). Russian Academy of Science,
Institute of the History of Science and Technology, second series, issue 9 (44), 2005, pp. 14-26. Translated
from Russian by Abe Shenitzer.
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L.I. was born on June 16, 1910 in Grodno into the family of the engineer Isaak Israilevich
Gordon. His father was a graduate of the famous German Polytechnic in Karlsruhe and was
therefore permitted to live outside the Jewish Pale of settlement. For a while the family lived
in Petersburg, where I.I.’s mother died in 1913. Then the family moved to Kharkov, for I.I.
Senior, a committed bolshevik and member of the VKP(b)*, occupied an important post in
the Ukranian Narkompros™. To run ahead, I mention that his intercession for a repressed
friend resulted in his exclusion from the party. He was saved by some miracle, and to the end
of his life (he died in 1972 at the age of 94) remained a committed Communist.

In 1927, I.I. graduated from a technical school in Kharkov and went to Moscow to study
mathematics at Moscow State University. At that time he was a committed member of the
Komsomol, a very natural thing for a 17-year-old Jewish youth. But during his very first
year at MSU, he was expelled from the Komsomol as a trotskyite. All soviet students were
taught in a course of the history of the CPSU that “on the occasion of the celebration of the
tenth anniversary of the Great October Revolution a brazen trotskyits sortie was organized:
the trotskyites demonstrated and used trotskyite, rather than bolshevik, slogans.” During
a subsequent meeting of the Komsomol they were all expelled from the Komsomol. Of course,
as a committed bolshevik, [.I. condemned the trotskyites and shared the view that they should
be expelled from the Komsomol. But when the question was posed at the meeting whether
the trotskyites should be allowed to explain their position, I.I. thought it obvious that they
should be allowed to do so. When a vote was taken, it turned out that I.I. was the only one to
vote yes. Then the secretary of the Komsomol organization Dimitrii Abramovich Raikov, who
later became a famous mathematician, expelled him from the Komsomol. I.I. told me that
in those years, Raikov was such a fanatical Communist that he was compared with members
of the Committee for Public Safety of the French Revolution. Later, in the 1930’s, Raikov was
himself expelled from the party and sent to Voronezh. For two years he taught at Voronezh
University but was later acquitted and readmitted to the party. Then he returned to Moscow.

In 1927, I.I. was readmitted to the Komsomol by some very high instance. After completing
a year’s work at MSU he went to Leningrad, for he could not find an apartment or even a room
for living in Moscow.

In Leningrad, I.I. studied together with, and became a close friend of, Georgii Rudolfovich
Lorentz. Later Lorentz became a famous expert in approximation theory. He emigrated from
the USSR during the war and worked for many years at the University of Texas in Austin.
In his recently published recollections [1]|, Lorentz mentions the fact that I. M. Vinogradov
taught a course that dealt with his research, and that he and I. I. Gordon were the only
listeners. The lectures took place in Vinogradov’s home. After completion of his university
studies, I.I. worked for a year as an assistant at LSU (Leningrad State University)—he ran
practice sessions for G. M. Fikhtengolts—and in 1932 became a graduate student at MSU
(by then he had no trouble earning a living). Initially he wanted to study number theory,
but his examiner at the entrance examination was L. S. Pontryagin, and the encounter with
Pontryagin directed his interest to topology. L.S. became his supervisor.

LI. obtained his first result [2] in the joint seminar of Lyusternik, Pontryagin, and
Shnirelman. In it he proved that on any n-dimensional manifold there is a function with n+1
critical points. This showed that the lower bound on the number of critical points of a smooth
function on a manifold, obtained earlier by Lyusternik and Shnirelman, was exact. For this
paper L.I. won the first prize in a competition of papers by graduate students.

*The first abbreviation of CPSU—Soviet communist party.
**State Department of Education
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In 1935, I.I. defended a candidate dissertation®. He was one of the first to defend
a dissertation after the introduction of scholarly degrees in the USSR. The dissertation was
later published in the Annals of Mathematics [3]. In it, simultaneously with Kolmogorov and
Aleksandrov and independently of them, I.I. introduced a construction of a cohomological ring.
All three lectured on this topic at the famous international topology conference in Moscow
in 1935 (J. Alexander. On rings of complexes and combinatorial topology of integration
theory; A. N. Kolmogorov. On homology rings in closed sets; I. I. Gordon. On invariants
of the intersection of a polyhedron and its complementary space. Ed.) In this connection, the
famous Swiss topologist H. Hopf wrote: “For many reasons, the year 1935 turned out to be an
especially important landmark in the evolution of topology. In September of that year there
took place in Moscow “The First International Conference on Topology.” The independent
lectures of J. Alexander, I. Gordon, and A. N. Kolmogorov initiated the theory of cohomology.
(The theory goes back to S. Lefschetz, who introduced the notion of a pseudocycle in 1930.)

What impressed me, and, of course, other topologists, most was not the emergence
of cohomology groups—after all, they are just groups of characters of ordinary homology
groups—but the possibility of defining multiplication of arbitrary complexes and more general
spaces, that is, the emergence of cohomology rings, which are generalizations of the ring
of intersections in the case of manifolds. Before this development we thought that such
a situation could arise only because of the local “Euclideanness of manifolds” [4, p. 11].

Gordon’s constructions of multiplication of cohomologies differs of those of Alexander
and Kolmogorov. Their constructions are identical. Later, H. Freudenthal [5] proved that the
isomorphism of the Gordon and Alaxander—Kolmogorov rings (in this connection see the paper
of L.S. of 1 April 1937).

In spite of the fact that I.I.’s dissertation was at the time a rather remarkable event
in topology, it was approved by VAK** only in 1938. The delay was connected with political
problems. As noted, I.I. was expelled from the Komsomol as a trotskyite in 1927 by a primary
instance but reinstated by some higher instance. On 1 December 1934 one of the Soviet
communist leaders, S. M. Kirov was killed®™*. His murder was blamed on trotskyites and
zinovevites who were subjected to extensive and intensive repressions. The first to be shot to
death without trial were scores of prisoners serving sentences resulting from their being accused
of counter-revolutionary activities. Lists of the executed were printed in Pravda under the
heading: “In response to the murder of Comrade Kirov, the following enemies of the people were
shot to death...” Then there was a purge in the party, followed by a purge in the Komsomol.
In the case of the Komsomol, all those who were ever penalized were automatically expelled.
One of the expelled was 1. I. Gordon. After that, the accusation of being a trotskyite pursued
him practically until the outbreak of the war. After the war, when filling out questionnaires,
he did not mention that he was expelled from the Komsomol. He thought that he got away
with this because the relevant archives were lost during the war. By some miracle he survived
and evaded the gulag.

I wish to note that in spite of his having been expelled from the Komsomol as a result
of the charge of trotskyism, I.I. could, and did, rely at the time on constant assistance of
both Pontryagin and P. S. Aleksandrov. It should be pointed out that, “assistance” has two

*The candidate degree is equivalent to our Ph.D degree, Trans.

**Higher Certifying Commission of the state department of education. All Candidate Science and Doctor
Science Degrees granted by Universities in the Soviet Union had to be approved by VAK. The same procedure
is used in Russia now.

***It is well known that the assassination of Kirov was organized by Stalin, who used it for extermination
of his political opponents.
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meanings, “ordinary” and “formal”. Thus L.S. and P.S. helped L.I. to find employment, wrote
excellent letters of recommendation for him and in addition, tried hard to ensure approval of
his candidate dissertation by VAK, in spite of his being a “politically questionable person.” L..S.
and P.S. submitted to VAK a very positive testimonial relating to I.I.’s candidate dissertation.
Had I.I. been arrested, this could have had dismal consequences for both of them. What follows
is the text of one of their references.

Reference

I.LI. Gordon completed successfully his training for research work at the Mathematical
Institute of Moscow University (beginning in 1921, this was the scientific and research
institute of mathematics and mechanics; beginning in 1935, this was the scientific and research
institute of mathematics (headed by A. N. Kolmogorov), Ed.) and defended a very interesting
dissertation on homological properties of complements of polyhedrons in n-dimensional space
for which he was awarded the degree of a candidate of the mathematical sciences. Before that,
while still a graduate student, I. I. Gordon completed a paper which won the first prize in
a competition of papers by graduate students. This paper was published in the Proceedings
of the second all-Soviet mathematical conference to which it was submitted by the author.
I. I. Gordon’s dissertation was published in the American journal Annals of Mathematics at
the invitation of its editors.

I. I. Gordon’s papers deals with difficult current questions of topology and its applications
and show that their author has a creative mathematical talent. They show that I. I. Gordon
is a very substantial mathematical researcher.

I. I. Gordon gave a lecture on his investigations at the First International Topology
Conference, which took place in Moscow in September 1935.

In addition to being a gifted young scholar, who has already embarked in a fully creative
manner on the road to independent scientific research, I.I. Gordon is also a university teacher
with high scientific culture and good pedagogical qualities. We can attest that his teaching
work at Moscow University was very successful.

In summary, the undersigned regard I. I. Gordon as a talented young mathematician who
has already made a valuable contribution to science and one who provides solid reasons for
expecting him to achieve further solid successes. Also, he is undoubtedly a valuable university
worker who has the essential qualities to give competent lectures in many advanced areas of
mathematics which require the lecturer to have very high mathematical qualifications.

Corresponding member of the USSR Academy of Science and doctor of mathematical
sciences

P. |S.] Aleksandrov
Professor of Moscow State University and doctor of mathematical sciences
[L. S.] Pontryagin
Crimea, Bati-Liman, 17 September 1936

(The reference was written by P. S. Aleksandrov by hand. The signatures of
P. S. Aleksandrov and L. S. Pontryagin were verified by the learned secretary of the
Mathematical Institute for Scientific Research on 4 November 1936. The document is kept in
the personal archive of I. I. Gordon.)

Were P.S. and L.S. aware that supporting a “trotskyite” spelled danger for them? Hard
to say. It seems to me that they never understood this or, simply, never gave it a thought.
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I once asked I.I. whether he realized that there was the threat that he might be arrested at
any moment. He replied that he never thought of this, although after 1934 he changed his
views, and to the end of his life his attitude vis-a-vis the Soviet authorities was one of total
enmity. He told me: “At that time I gave it no thought, just as you don’t think of death every
day.” It is possible that such a defensive reaction of the organism is the basis of all courage,
and throughout his life, I.I. was a remarkably fearless person. At that time there were people
in I.I.’s milieu who reacted altogether differently. For example, in 1938 I.I. moved to Voronezh
and got to know his future wife who, at the time, also had problems with the NKVD*. At
that time, Nikolai Vladimirovich Efimov. I.I.’s friend from the time of their graduate days,
and his wife Roza Yakovlevna Berri, tried to talk I.I. out of associating with her. They told
him that both of them had damaged reputations and it was possible to attribute to them the
creation of a counter-revolutionary organization.

After completing his graduate studentship, I.I. began work at the university of Saratov.
He was offered employment by Gavriil Kirillovich Khvorostin, the rector** of the university
between 1935 and 1937. He said that he wanted to turn his university into a “Go6thingen
on the Volga.” That is why he offered positions to such famous mathematicians of the older
generation as I. G. Petrovskii and A. Ya. Khinchin, and to “young hopefuls” such as Vietor
Vladimirovich Wagner and I. I. Gordon. V. V. Wagner was born in Saratov and worked all
his life at Saratov State University. He became a famous algebraist and geometer. Wagner
belonged to the large group of graduate students who defended their dissertations but was
one of only two who were granted the degree of doctor of mathematical sciences on the basis
of their defense. This was in 1935. The friendship of V. V. Wagner and I. I. Gordon continued
throughout their lives. I.1.’s archive contains many letters of this remarkably interesting man
who knew at least ten European languages and was a connoisseur of history and literature.

L.I. Gordon lived in Saratov between 1936 and 1937. He told me a great deal about this
period. I rely on my memory for the most interesting fragments of his account.

The windows of I.I.’s room faced the famous Saratov jail. The street before the jail was
full of women who wanted to catch a glimpse of their husbands in the windows of the jail.
On a “beautiful” day all this came to an end—at night the jail windows were covered by
shutters known as muzzles—inclined shutters that let light penetrate into the cells but made
it impossible for their occupants to see the street.

In the streets, one encountered many exiled Leningradians. They stood out in the crowd
due to their intelligent and aristocratic “capital”’ appearance. I.I. mentioned a certain old
bolshevik, a red professor (a member of N. I. Bukharin’s Institute of the red professoriat)
deported from Moscow, who also quietly vanished from sight. The red professor invariably
walked alone and always had his red emblem medal pinned on his chest.

L.L. lived in a house with 28 apartments. In the 26 of them at least one of a family members
was arrested. A guard sat in the entrance. Every day when I.I. passed the guard, the latter
whispered: “today they took away so-and-so.” One day, when L.I. was leaving the house, he
noticed a new guard. The new guard told him that the old guard was arrested.

It seems that the fact that the university management hired scholars from other cities was
detrimental to the allocation of fiats to local workers. This angered some of them and resulted
in their starting various intrigues (it was not only “Moscovites” who “turned ugly over flat
shortages” as it was mentioned by Voland in the popular novel “Master and Margarita” by
M. Bulgakov). I.I. remembered that one day, after a meeting of the learned council, Rector

*the abbreviation for the State Security Department later famous as KGB.
**the Russian analog for the university president.
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Khvorostin quoted Yesenin’s “You can’t manage a brute with a dry branch.”* I.I. was the first
victim of these intrigues—his “trotskyism” came to light and the rector was forced to dismiss
him. He went to Moscow to obtain a reinstatement in Moscow. At that time the Moscow
metro had just been opened, and [.I. remembered the depressing effect on him of a sign on
the metro door which read: “No outlet”. Nevertheless, his dismissal was judged unlawful. Not
only was he reinstated but he was paid for half a year of forced unemployment. I remind the
reader that this was 1937.

But L.I. did not work very long. At the end of 1937, rector G. K. Khvorostin was arrested
and subsequently died in prison. After his arrest, I.I. was immediately dismissed. The dismissal
had the following wording: “to be dismissed as a former trotskyite, offered work by an enemy
of the people.” This time there was no hope for reinstatement. What saved the day was
the fact that the number of unemployed who lost their positions for similar reasons was
staggering. It seems that a decision was taken on a very high level of government that as
long as these people were free (the free people were probably a minority) they should work.
M. E. Koltsov** wrote an article in “Pravda” about the “overcautious persons”’ (this fact was
described by L. K. Chukovska in her famous novel “Sofya Petrovna”). Then I.I was called
to the Narcompros and asked to choose a place of employment. He wanted to return to the
University of Saratov (which shows that he did not fully understand what was happening and
failed to understand the danger that threatened him). While his interlocutors did not rule
out his request, they amicably advised him to give it up. Then he chose Voronezh university,
where N. V. Efimov was in charge of the division of geometry. According to I.I., N.V. was
terrified by the fact that his division would employ so politically compromised a person but
he could not do anything, for he remembered his friendship with I.I. which dated back to the
days of their graduate studentship. Later Wagner told I.I. that members of the NKVD asked
him about L.I. But at the time the NKVD did not look for people in other towns. Why mess
about elsewhere if one could always find a victim on the spot? It seems that this saved I.I.
from being arrested. Had he stayed in Saratov, his arrest would have been unavoidable.

Shortly after I.I.’s arrival in Voronezh was an event of greatest significance for me,
the author of these lines—Izrail Isaakovich got to know his future wife, my mother, Nina
Aleksandrovna Gubaf. They got married in the summer of 1938.

N. A. Gubarf was born in Petrograd into a family of doctors on July 29, 1915. After the
revolution and the civil war the family ended up in Voronezh. N.A.’s father, an excellent
therapeutic doctor, died at the age of 42. N.A.’s older brother, Mikhail Aleksandrovich, was
arrested in 1933 and sentenced to 5 years in a prison camp for being a member of a theosophical
circle. The judge explained to him that “at this time your circle is not counter-revolutionary,
but we can’t wait until it is transformed.” Just as my parents, so too, M. A. Gubar was lucky.
After serving his sentence, he was freed in 1938, readmitted to the medical institute from
which he graduated before the war, served during the war as a sanitary inspector, and then,
for the rest of his life (he died in 1969), he did research in military hygiene, was a colonel in
the medical service, and a doctor of sciences. The luck I write about consisted in the fact that
he was not arrested a second time, as were most of political convicted prisoners that were
released at that time.

N. A. Gubaf was a graduate of the department of mathematics of Voronezh University.
Then Voronezh was a rather impressive mathematical center. As mentioned earlier,
D. A. Raikov taught in Voronezh between 1933 and 1935. After completing his graduate
studentship and defending his dissertation, N. V. Efimov was appointed chair of geometry.

*In Russian “dry branch” sound similar to his last name—“khvorostina”.
**A popular Soviet journalist, who was arrested and shot to death a couple of years later.
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Boris Abramovich Fuks was chair of functions of a complex variable, and Maksimillian
Mikhailovich was chair of analysis. Victoria Semenovna (Vitya) Rabinovich was acquainted
with L. S. Pontryagin back in Moscow. He mentioned her in his autobiography [6]. L.S., as
well as L. A. Lyusternik, delivered lectures in Voronezh on a number of occasions.

At the time all of these people were very young and students and teachers formed
a single group. N. A. Gubar recalled that when N. V. Efimov was supposed lecture and
was not, in class, students ran to his apartment at the university to wake him up. Fellow
students of N. A. Gubar were: Roza Yakovlevna Berri, Anna Aleksandrovna Gurevich,
who later married Vladimir Abramovich Rokhlin, and Aleksandra Ivanovna Tsvetkova, who
later married Aleksander Grigofevich Sigalov. All of them maintained friendly relations with
L. S. Pontryagin and are frequently mentioned in his letters.

One other student belonging to this group was Vladimir Ivanovich Sobolev, later a well
known expert on functional analysis. Sobolev and L. A. Lyusternik were the joint authors of
the first Russian textbook on functional analysis (L. A. Lyusternik, V. I. Sobolev, Elements
of Functional Analysis, Moscow, 1951 (Ed.)).

I wish to say a few words about yet another student in this group, a man whose life was
difficult and interesting. He was Nikolai Aleksevich Zheltukhin. He was arrested when he was
a third year student. His arrest was the result of a denunciation by one of the comrades who
reported the fact that Zheltukhin was critical of the collectivization and hunger in Ukraine.
He told us what had happened to him when he visited us at home in Gorkii, in the 1970s.
I tell his story from memory. First he ended up in camps in the Arkhangelsk district where
he worked in forest clearing. There he felt that his strength was giving out [2]. Somebody
told him that if a prisoner invented something, he could send a description of his invention
to a special section of the NKVD, and it could happen that the person in question would be
transferred to one of the so-called, “sharashka’s”, special secret research institutes, in which
prisoners worked. Living conditions in the “sharashka’s” were incomparably better than in the
camps (see A. I. Solzhenitsyn’s “In the first circle”). When it comes to his scientific interests,
N. A. was at the time a pure mathematician, and had written a paper on descriptive set
theory. But when he was still a schoolboy he read an article about tractors in the journal,
Technology for the Young and figured out that a certain mechanism described in the article
could be adapted to planes. N.A. didn’t take his invention very seriously but saw no other
chance of survival. He described his invention and dropped it in the mailbox on a pine tree.
To his amazement, he was transferred to “sharashka” and worked under S. P. Korolev, the
future inventor of spacecraft. His invention was evaluated by academician B. S. Stechkin.
He was a prisoner at the time but headed a commission which evaluated inventions. Since
Stechkin he tried to save as many people as possible, he would often come up with the
conclusion, “It makes sense to send for the author” even if the “invention” was worthless (this
benevolent activity of B. S. Stechkin is also described in “In the first circle”). N.A. told us
that he once ran into Stechkin and had the check to ask him whether he remembered his—
Zheltukhin’s—invention and what he thought of it. Stechkin replied: “Of course, I remember.
You, my friend, wrote rubbish. What will take place is cooling, not heating.” And went on to
explain why. H. A. Zheltukhin’s subsequent scientific lot was very successful. A few years after
the end of the war, he was freed, worked for the rest of his life in the Institute of Mechanics
in the Novosibirsk Academic Village, and became a corresponding member of the Academy
of Science of USSR.

N. A. Gubaf was more than once called to the NKVD in connection with Zheltukhin.
She refused to give any depositions, behaved in a provocative way, but somehow was not
arrested. All that happened was that the NKVD wrote a letter to the university about her
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improper behavior. She was not even expelled from the university (she was not a member of
the Komsomol). All that happened was that she was criticized at a meeting. Nevertheless,
many of her friends were later afraid to associate with her, and, until the arrival of I. I. Gordon
in Voronezh, she was, as I mentioned, isolated.

L.I. and N.A.’s first son, Aleksandr, was born shortly before the outbreak of the war. When
the evacuation of Voronezh University to Siberia was ordered in September 1941, their family,
as one with a tiny baby, was among the first to be evacuated. (As a candidate of science,
and a person with poor eyesight, I.I. had a “white ticket” and was not a subject for the draft
into the army.) When their train stopped in Petropavlovsk (Kazakhstan), they heard a radio
announcement about a change in the evacuation order of Voronezh University. It made no
sense to travel farther, and, according to the conditions of the war time, it was impossible to
return to Voronezh. They were employed as high school teachers of mathematics and physics
in a village named Bolshe-Izyum in the Petropavlovsk district. Living conditions in Bolshe-
Izyum were extremely difficult, and their family suffered constant hunger. L. S. Pontrygin,
who was evacuated to Kazan, was well aware of their difficulties and of the difficulties of many
of his other friends, and did all he could to help. The letters show that he tried to obtain for
I.I. a position in a university, a matter of utmost difficulty. With the help of his relatives, who
had been evacuated to Omsk, I.I. obtained a position at the Omsk Polytechnical Institute.
However, he had to have permission to leave his school job, a step firmly objected to by
the director of the school. There were just two men in the school, and in the Kazakhstan
backwater a white ticket would not have helped I.I. avoid call-up to a reserve regiment (The
horror of such regiments is described in the novel by V. P. Astafyev “Damned and killed.”).
If I.I.were freed from call-up then the director would be called up. L.S. made tremendous
efforts to help, and secured the assistance of S. L. Sobolev, head of the Steklov Institute, and
of S. V. Kaftanov, the prime minister of the Soviet Goverment at that time. I.I. went with his
little son to Omsk and N.A. remained in the Bolshe-Izyum school until the end of the school
year. The director of the school was not called up.

L.I. Gordon’s family lived in Omsk for a little longer than a year. In the fall of 1944,
LI. obtained a position at the university of Gorkii (now Nizhnii Novgorod). This was due
to L.S.’s recommendation of academician Aleksandr Aleksandrovhic Andronov (L.S. was his
friend from 1932, Ed.). I.I. and N.A. lived in Gorkii to the end of their lives. After the war, L.I.
produced a few more papers on topology |7, 8, 9]. He taught many courses at the mechanical-
mathematical and radio-physical Departments. He would sometimes teach six courses a term.
Many of his students, who themselves became famous scholars, gratefully recall his lectures
and speak of him with warmth and respect.

Nina Aleksandrovna Gubar studied qualitative theory under supervision Evgenya
Aleksandrovna Leontovich Andronova, got her candidate of science degree and work until
retirement as a docent (associate professor) in the department of mathematics of the Gorkii
institute of water engineering.

For a long time life in Gorkii was not easy either. It was only from 1962 that the
family enjoyed acceptable living conditions—a small two-bedroom apartment (so-called
“khrushchevka”) for a family of five. In that same year, L.I. suffered a heavy heart attack,
followed by extremely heavy complications. In this case L.S. payed a vital part. He helped I.1.
twice to obtain accommodation in a very in a very good academic sanatorium near Moscow.
Of course, this helped L.I. to recover after his heart attack and live for over twenty more years.

The therapeutics professor who took care of I.I. after his heart attack asked what preceded
the heart attack. When this was told to I.I.’s department head Dmitrii Andreevich Gudkov,
a remarkable person and mathematician, he commented that the heart attack was preceded
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by twenty years of baiting. In fact, for many years the conditions in the department of
mathematics of Gorkii University were very difficult. A very active group of second-rate
mathematicians with leading party and administrative positions persecuted for various reasons
the accomplished and highly qualified members (I wrote about this in my recollections of
D. A. Gudkov [10].) L.I. provoked the intense anger of these people because of his independent
character and the uprightness and directness of his opinions.

All difficulties notwithstanding, my parents life in Gorkii was happy and interesting
owing to their remarkable friends. In the first place, I must mention their friendship with
A. A. Andronov, who was not only an eminent scholar but also an extremely interesting,
clever, obliging, and grateful person. Unfortunately A.A. died in 1952, age 51. Much has
been written about him. Recently, Nizhegorod University published an interesting selection of
documents relating to him [11]|. After his death, his wife, E. A. Leontovich-Andronova became
the head of the mathematical branch of his school. I.I. and E.A. wrote two monograps [12,
13| containing the fundamental results of the Andronov school on the qualitative theory of
plane dynamical systems. This is not the place for describing all friends of I.I. and N.A. For
me, these people were a splendid example of modern Russian intelligentsia.

I. I. Gordon died on April 22, 1985. N. I. Gubar’ lived for another nine years. She died
on 13 August 1994.

Contacts between I. I. Gordon and L. S. Pontryagin ended in 1969. The subsequent
activities and key position of L.S. are well known and have been described many times by
L.S. and many others. Comments on these matters do not belong to the present remarks.

The author is deeply grateful to V. M. Tikhomirov, who inspired him to publish
Pontryagin’s letters, to G. M. Polotovskii, and to his wife I. N. Gordon for their assistance in
the preparation and publication of the letters.
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ITPABUJIA OJId ABTOPOB

OO01ue moJIoXKeHus

1. Tlepuonmdeckoe u3manne «BianukaBKa3cKuii MaTeMaTUYECKUI KypHAJIy» MyOJIUKyeT
OPUTMHAJ/IbHBIE HAyYHBbIE CTATBU OTEYECTBEHHBLIX U 3apYOEXKHBLIX ABTOPOB, COACPXKAIIME HO-
Bble MaTEMaTUIECKUE PE3YJIbTATHI 10 (DYHKIMOHAJIHLHOMY U KOMILJIEKCHOMY aHaJIU3y, ajareope,
reomerpun, JuddepeHnuaabHbIM ypaBHEHUIM 1 MaTeMaTudeckoit ¢pusuke. [1o 3akasy pemgax-
[IMOHHOM KOJIJIETUN 2Ky PHAJI TAKXKe IyOIuKyeT 0030pHbIe cTarbu. 2K ypHa  IpeHasHadeH J1ist
HAYYHBIX PAOOTHUKOB, IPEIOJIaBaTe/eli, ACIUPAHTOB U CTYIAEHTOB crapmux Kypcos. [lepuo-
JUYIHOCTb — YeThIPE BBINYCKa B I'oj. «BjajnkaBka3ckuii MaTeMaTUIeCKuil KypHaay My0/Iu-
KyeT CTaTbU HA PYCCKOM U AHIVIUHCKOM $I3bIKax, 00beMOM, KaK IPaBUJIO, He Hojiee 2 yCJIILJL.
(17 crpanun, popmara A4). PaGorbl, npeBbIIaonme 2 ye/I.I.JI., IPUHUMAIOTCS K 11y O TMKaIun
o creruajibHoMy pertiennio Pejkosernn xkypaasa. Cpok paccMOTpeHust cTaTeil 0ObIMHO He
npeBbIiaeT 8 mecsneB. [Ipu moArorosBke crareil [Jist yCKOpEeHUs WX PACCMOTPEHUst U IryOJim-
KaIlUU CJIeIyeT CODJIIO/IATh MPABUJIA JIJIsi aBTOPOB.

2. K nyonukanuu 8 BM?K npunnmarorcst crarbu, copepKaliiie HOBble Pe3yJIbTaThl B 00/1a-
CTU MaTEMaTUKU U CTaThbu 0030pHOr0 Xapakrepa. CraTbu, paHee OIyOJIMKOBAHHBIE, & TAKKE
IPUHATHIE K OIMyOJUKOBAHUIO B APYIUX KYpPHAJIAX, PEIKOJIETHell He PacCMaTpUBaioTCs. Pe-
3yJIBTATBI MHBIX aBTOPOB, MCIIOJIb30BAHHDLIE B CTATHE, CJIEIyeT HMOJIKHBIM 00pPa30M OTPA3UTDH
B cchlIKaxX. Hampapiisist cTaTbio B 2KypHAJI, ABTOPBI T€M CAMBIM ITOJITBEPKJIAIOT, ITO JIJIsi HEee
BBITIOJIHEHBI YKA3aHHbIE TPEOOBAHUSI.

3. Hanpapiisist cTaThio B YKypHAJI, KaXKJ[bIil 13 aBTOPOB HOJTBEPK/IACT, YTO CTATbS COOTBET-
CTBYET HAWBBICIIUM CTAHIAPTAM ITyOJIMKAIIMOHHON STUKH JJIsi aBTOPOB U COABTOPOB, pa3pado-
ranusiM COPE (Committee on Publication Ethics), cm. http://publicationethics.org/about.

4. Bce marepuaJibl, TOCTYIUBIINE JJsI IIyOJUKAIIUN B XKypHAJIE, HOJIEKAT PErucTPAIUN
€ yKa3aHUEM JIaThl [OCTYILUIEHUs] PYKOIIUCU B PEJIAKINIO »KypHasa. Perienne o mybsukanuu,
OTKa3e B IyOJUKAIIMU WU HAIIPABJIEHUN PYKOIHMCH ABTOPY JJis JOPADOTKU JOJI2KHO ObITH
[PUHSITO IVIABHBIM PEJIAKTOPOM 1 COOOITIEHO aBTOPY He O3/Hee 4 MECHIEB CO JHS TOCTYIICHUS
pykomucu B pefaknuio kypHaja. [logpobuee cMm. B pazzesne Pernenzuposanue.

5. IllpunsTeie k nyoaukanuu B BM2K crarbu npoxomaT pegakiinoHHYIO TOATOTOBKY, ITOCTIe
Yero OKoH4YaTebHbIN MakeT cratbu B hopmare PDF narnpasisiercs aBTropy Ha KOPPEKTYDY.

6. YciioBueM myOIMKAIAN CTATEH, IPUHATHIX K IEYATH, SIBJISIETCS HMOIIINCAHUEM aBTOPAMHI
JIOTOBOPA O mepejade aBTOPCKUX MpaB. BJlaHK J0roBopa MOXKHO CKA4YaTh I10 CCBHIIKE.

7. IonHoTeKkCTOBBIE Bepcuu cTaTel, MyO/JIMKyeMbIX B KypHaJe, pa3Memniaorcsa B urepue-
Te B CBOOOJIHOM JIOCTYIIe Ha OUIHAILHOM caiite XKypHasa http: //www.vlmj.ru, a Takzke Ha
caiitax Hayunoit ssrekrpornoit 6ubsmorekun eLIBRARY.RU, O6mepoccuiickoro maremarmde-
ckoro noprajia Math-Net.Ru u Hay4unoit snexkrponnoit oubsmoreku «KubepJlenunkay.

8. Ilybsiukaruu B »KypHaJie JJisi aBTOPOB OECILIaTHDI.

HOI[I‘OTOBKa n mnmpeacraBJieHNEe PYKOIIMCU CTaTbMU

1. Bce MmaTepuraibl IpeoCTaBISIIOTCS B PEIAKIIAIO B 9JIEKTPOHHOM BHJIE. PyKoIMch J0/KHA
OBITH TIATE/IBHO BhIBEPEHA. Bee cTpaHuIlbl PyKOIUCH, BKJIOYasT PUCYHKH, TAOIUIBI U CIIUCOK
JINTEPATYPBI, CJEIyeT IPOHYMEPOBATD.

2. Pabora moKHa OBITH MOATOTOBIEHA HAa KOMIIBIOTEpE B M3JaTesbcKoil cucteme LaTeX.
MarmmHonucHbIe PyKOIMCH U PYKOIIMCH, HaOpaHHbIe Ha KOMIIBIOTEPE B CHCTEMAaX, OTJMIHBIX
or TeX, ne paccmarpupatorcs. Paiisbl crarbu *.tex u *.ps (*.pdf) BeicBUIAIOTCS B ajpec
PeIaKIUN 10 3JIEKTPOHHOI mouTre rio@smath.ru.
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3. B Tekcre crarbu ykasbiBaercs unieke YK, nazBanue paboThl, 3aTeM CJIEIYIOT HHUIIH-
asbl U (paMUIMU aBTOPOB, IPUBOJSITCS AHHOTAIMN HA PYCCKOM U aHIVIMACKOM s3bIKax (00be-
MoM He Meree 200 ¢JI0B, JIOCTATOYHYTO JJisi IOHUMAHUSI COJIEPYKAHNST CTATBH ), JAIOTCS CIHCKH
KJIIOUEBBIX CJIOB HA PYCCKOM U AHIVIMICKOM $3BIKaX, a TaKxKe Kojbl corsiacHo Mathematics
Subjects Classifications (2010). dasee B daiine npusoggarcs nmosnocrbio amuiust, Nmst, Or-
YeCTBO KayKJOI0 aBTOpa, JOJKHOCTB, IOJTHOE HA3BAHUE HAYJIHOI'O YUPEXKJIEHUsI, HOUTOBBIN
aJIpec ¢ MHJEKCOM IMOYTOBOIO OTIEJIEHHUsI, HOMeD TejiepOHa ¢ KOJOM TOpOJia WU HOMED MO-
bmwibHOTO Testedona, ajgpec snekTpornoit moursl 1 ORCID.

4. JlaToit OCTYILJIEHUsI CTAThbU CUUTAETCS J1aTa MOCTYILIEHUs JIEKTPOHHON KOIUH CTATbH
Ha odunua bHbIi e-mail kypHasia. TekcT 3JIeKTPOHHOTO COODIIEHUST TOJIKEH OBITH 0(DOPMIIEH
KaK COIPOBOJIUTE/IBHOE ITUChMO, U3 TEKCTa KOTOPOI'O SICHO CJIEJIYET, YTO aBTOPBI HAIIPABJISIIOT
CBOIO cTaThbio BO BitajinkaBkasckuii MmaremaTudeckuii xKypHas. Heobxonnmo ykaszaTb aBTopa,
OTBETCTBEHHOIO 3a MEPEINCKY C PeJIaKIhei.

5. B aHHOTAIIMM HE JIOMYCKAETCs HMCIOJB30BAHUE I'POMO3JIKUX (POPMYJI, CCHUIOK HA TEKCT
paboThl WJIM CIIUCOK JIUTEPATYPHI.

6. Ilpu mogroroBke daiina crarbu ocoboe BHUMAHUE CJIEAYeT OOPATUTh HA HEXKEIATEJIb-
HOCTb MCIIOJIb30BaHMsI HOBBIX (BBOJIMMBIX aBTOPOM IIPH HAOOPE) KOMAaH/HBIX I10CJIEI0BATE b
HOCTeill, 0cobeHHO ¢ mapamerpamu. CiiejyeT UCIob30BaTh B OCHOBHOM CTaHIaPTHBIE CPEJICTBA
makponakera LaTeX. Takxke kpaiine HeKeIaTe/IbHO UCIO/IH30BaTh 6€3 HEOOXOIUMOCTH 3HAKH
mpobea.

7. Crarbu, cozuepKallife PUCYHKH, PACCMATPUBAIOTCS TOJIBKO TOCJE COIJVIACOBAHUS C Pe-
JIaKIHell TEXHUIeCKUX BOITPOCOB MOJINOTOBKY PUCYHKOB. UepHO-6ejIible pUCYHKH JIOJI?KHBI ObITH
noarorosiensl B popmare EPS (Encapsulated PostScript) Takum obpasom, arobbl obecriedn-
BaTh aJeKBATHOE BOCIIPUSITHE UX IPHU IOCEIYIOMEM ONTHIECKOM YMEHBITEHUU B JIBa Pasa.
[Ipu ucnosib3oBaHNM PUCYHKOB HEOOXOMMO MOJK/II0INTh nakeT epsfig. Tloanucs K pucynky
JIOJKHA OBITH IEHTPUPOBAHA, I10J PUCYHKOM U COCTOSITH U3 CJIOBa «PuUC. » ¢ MOC/IEIY FOIIM
HoMmepoM. Homepa prcyHKOB JIOJIZKHBI UMETh CKBO3HYIO HYMEPAIUIO 110 TEeKCTY cTarhu. [losc-
HEHUsI K PUCYHKY CJIeJIyeT IPUBOJIUTEL B TEKCTE CTaThu. Tab/IMIbl COITPOBOXKIAIOTCST OTOPMa-
THUPOBAHHON CJIeBa HAAIUCHIO « Tabsumay ¢ nmocsesyionumM nomepom. Homepa tabiuir 1012KHbI
UMEeTh CKBO3HYIO HYMEPAIUIO 110 TEKCTY cTaTbu. [losicHeHus K TaOJuIe MPUBOJATCS B TEKCTE
cratbu. ['paduku BBIIOJHAIOTCS B BUIE PUCYHKOB.

8. Cuucok JinTepaTyphl J0JXKEH COJIEPKATH TOJIHKO T€ UCTOYHUKH, HA KOTOPbIE UMEIOTCH
CCBLIKH B TEKCTE PabOThI, PACIIOIOKEHHbBIE B MOPsiJiKe UTUpoBaHusi. CChIJIKU Ha HEOITYOJ KO-
BaHHBIE PAbOTHI, PE3YJIBTATBI KOTOPBIX HCIIOJB3YIOTCH B JIOKA3aTEIbCTBAX, HE JOIYCKAIOTCS.
Crmcok tuTepaTryphl [Iev9aTaeTcs B KOHIIE TEKCTa CTaThi, 0POPMJIEHHBIE B COOTBETCTBUH C ITPa-
BUJIAMU U3JIaHUsI, HA OCHOBAHUU TpeboBaHUil, nperycMorpenubix JeficrBytomumu ['OCTamu.
B HeMm 510/KHBI OBITH yKa3aHBI: JJIsI CTaTbeli — aBTOp, ITOJTHOE Ha3BaHUE CTATbU, YKYPHAJI,
rOJI M3/IaHUsI, TOM, HOMED (BBIIIYCK), CTPAHUIBI HAYAJA M KOHIA CTATbU; JIJIsi KHUI — aBTOP,
[IOJTHOE Ha3BaHUe, TOPOJ, U3ATEJILCTBO, IO U3daHusl, 0bInee KoJu4IecTBO crpaHul]. CchLIKN
Ha JINTepaTypy B TEKCTE JAIOTCS B KBAJIPATHBIX CKOOKAX.

9. Crucok JIuTepaTypbl MOJTHOCTHIO yOJUpyeTcs: HA aHIVIMICKOM S3bIKE, TPUBOJIUTCS 10
HOCTBIO OTJIEJIbHBIM OJIOKOM B KOHIIE CTATBU, MOBTOPsisl CIIUCOK JIUTEPATYPHI K PYCCKOSI3BIU-
HOIl 9aCcTH, HE3aBUCHMO OT TOIO, UMEIOTCS WM HET B HEM WHOCTPAHHBbIE MUCTOYHUKU. Kcym
B CIIMCKE €CTh CCBLJIKU Ha WHOCTPAHHBIE ITyOJIMKAIUN, OHU ITOJTHOCTHIO IOBTOPSIFOTCST B CITACKE,
roroBsmeMcs B pomaHnckoMm ajidasure. Crucok References ncrosbsyercss Mexx1yHapOIHBIMU
6ubsmorpaduveckuvu 6asamu (Scopus, WoS u Jp.) jiis yuera IUTUPOBAHKsT aBTOPOB.

IIpumeuanue: 60see MOAPOOHYIO MHMOPMAIMIO MOXKHO HaiiTh Ha OQUIMAJILHOM caiiTe
)KypHasa http: //www.vlmj.ru.
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