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USING HOMOLOGICAL METHODS ON THE BASE
OF ITERATED SPECTRA IN FUNCTIONAL ANALYSIS

E. I. Smirnov

We introduce new concepts of functional analysis: Hausdorff spectrum and Hausdorff limit or H-limit of
Hausdorff spectrum of locally convex spaces. Particular cases of regular H-limit are projective and induc-
tive limits of separated locally convex spaces. The class of H-spaces contains Fréchet spaces and is stable
under forming countable inductive and projective limits, closed subspaces and quotient spaces. Moreover,
for H-space an unproved variant of the closed graph theorem holds true. Homological methods are used
for proving of theorems of vanishing at zero for first derivative of Hausdorff limit functor: Haus'(X) = 0.

Key words: topology, spectrum, closed graph theorem, differential equation, homological methods, cat-
egory.

Introduction

The study which was carried out in [1-2] of the derivatives of the projective limit functor
acting from the category of countable inverse spectra with values in the category of locally
convex spaces made it possible to resolve universally homomorphism questions about a given
mapping in terms of the exactness of a certain complex in the abelian category of vector
spaces. Later in [3] a broad generalization of the concepts of direct and inverse spectra of
objects of an additive semiabelian category G (in the sense V. P. Palamodov) was introduced:
the concept of a Hausdorff spectrum, analogous to the ds-operation in descriptive set theory.
This idea is characteristic even for algebraic topology, general algebra, category theory and
the theory of generalized functions. The construction of Hausdorff spectra X = { X, F, hys}
is achieved by successive standard extension of a small category of indices 2. The category H
of Hausdorff spectra turns out to be additive and semiabelian under a suitable definition of
spectral mapping. In particular, H contains V. P. Palamodov’s category of countable inverse
spectra with values in the category T'LG of locally convex spaces [1]. The H-limit of a
Hausdorff spectrum in the category T' LG generalizes the concepts of projective and inductive
limits and is defined by the action of the functor Haus: H — TLC. The class of H-spaces
is defined by the action of the functor Haus on the countable Hausdorff spectra over the
category of Banach spaces; the closed graph theorem holds for its objects [8] and it contains
the category of Fréchet spaces and the categories of spaces due to De Wilde [7], D. A. Rajkov
[5] and Suslin [6]. The H-limit of a Hausdorff spectrum of H-spaces is an H-space [7]. There
are many injective objects in the category H and the right derivatives Haus® (i = 1,2,...) are
defined, while the “algebraic” functor Haus : H (L) — L over the abelian category L of vector
spaces (over R or C) has injective type, that is if 0 = X — Y — Z is an exact sequence
of mappings of Hausdorff spectra with values in L, then the limit sequence 0 — Haus(X) —
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Haus(Y) — Haus(Z) is exact or acyclic in the terminology of V. P. Palamodov [2]. In
particular, regularity of the Hausdorff spectrum X of the nonseparated parts of Y guarantees
the exactness of the functor Haus : H(TLC') — TLC' and the condition of vanishing at zero:
Haus'(X) = 0. The classical results of Malgrange and Ehrenpreis on the solvability of the
unhomogeneous equation p(D)D’ = D’ where p(D) is a linear differential operator with
constant coefficients in R and D’ = D’(S) is the space of generalized functions on a convex
domain S C R", can be extended to the case of sets S which are not necessarily open or
closed. Analogous theorems for Fréchet spaces were first proved by V. P. Palamodov [1-2].

1. We recall certain definitions and theorems which are used in this chapter and which
were brought into the discussion in [3-6]. Let © be a small category. By a directed class in
the category we mean a subcategory satisfying the following properties:

(i) no more than one morphism is defined between any two objects;

(ii) for any objects a, b there exists an object ¢ such that there exist a — ¢ and b — c.

Let A be some category and s denotes the object of a category A (if Q € 2 and a,b € Q

we will denote the corresponding morphisms of category 2 by a R b). We shall call the
category B with objects S, where S is a subcategory of A, a standard extension of the
category A if the following conditions are satisfied:

1°. A is a complete subcategory of B;

2°. The morphism wgg : S’ — S of the category B is defined by the collection of
morphisms wyy : 8" — s (s' =5 s) of the category A such that

(a) for every s' € S there exists s € S such that s’ =% s;

w. W,/ w5, wsf

(b) if s =% s, p' % p, s —> p, then there exists a morphism s’ —> p’ and the following

diagram is commutative:

S
S — P

Wss! T TWPP/

s/ S’ p/
We will establish the successive standard extensions of categories
Q(s) ¢ B(T) ¢ (F) — X°(F) c D(F),

where T' C €) denotes directed classes of objects s € 2, coincides as object of category B;
F, F € B, denote filter bases of sets T' € B, considered as objects of category X, and F,
F C ¥, denote directed classes of objects F' € ¥ of the dual category X9, considered as objects
of category D. We shall say that such classes F' are admissible for Q; put [F| = Upep T,
|F| = Upep |F|, so that [F| € Q and [F| C Q. The most characteristic constructions
connected with Hausdorff spectra use in the role of the small category 2 = Ord I, where [ is
a partially ordered set of indices, considered as category.

ExAMPLE 1 (standard extension of the category A). Let G and A be categories, T'(F')
the category of covariant functors F': G — A with functorial morphism & : F; — Fb defined
by the rule [2] which assigns to each object g € G a morphism ®(g) : Fy(g) — F»(g) of the
category A such that for any morphism w : ¢ — h of the category G the following diagram is
commutative

A(h) " By(n)

@ | [P

Fi(g) =9 By(g)
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It is clear that each object s € A generates a covariant functor F : g € G — s € A such that
A C T. Moreover, A is a complete subcategory of T

We will show that T provides a standard extension of the category A (by means of the
category G). Let F € T and S C A be such that S = UgeqF(g) and for s’,s € S the set of
morphisms Hom(s', s) = U, F(w), where w : ¢ — h and s’ = F(q), s = F(h). Therefore the
category B is defined, where S is a subcategory of A and the morphisms wgg : 8" — S of
the category B are generated by the collection of functorial morphisms ® : F’ — F, where
F' € T generates S’, while F' generates S according to the method indicated above.

If we take such a functorial morphism ® : F' — F, then the morphisms ®(g) : F'(g) —
F(g) (g € G) of the category A form a collection of morphisms wsy : s — s (s’ = F/(g),
s = F(g)) such that (a) is satisfied. Condition (b) follows from consideration of the definition
of the functorial morphism.

Thus, B is a standard extension of the category A. If G = Ord I, where I is a linearly
ordered set, then T' = B(S).

EXAMPLE 2 (Palamodov [1]). The categories of direct and inverse spectra over a semia-
belian category K are standard extensions of the category K.

EXAMPLE 3 (construction of an admissible class for Q). Let T be a separated topological
space and €2 a countable set. We shall call a set A C T an s-set if

4= U N

Beuxx teB

where T} (t € ) is a subset of T and K is the family of subsets B of the set Q such that
(a) for each B € K the set Tp = NiepTy is compact in T,
(b) the sets Tp (B € K) form a fundamental system of compact subsets of A.

Proposition 1. Every separable metric space is an s-set.

Proposition 2. Let A be a subset of the finite-dimensional space R™. Then A is an s-set

and moreover
A=J N (1)
BeX teB

where the T; are compact subsets of R™.

Thus, s-sets are a generalization on the one hand of compact spaces (and locally compact
spaces which are countable at infinity) and on the other of separable metric spaces. However,
s-sets will be of interest to us in connection with the possibility of constructing the associated
functor of a simple Hausdorff spectrum.

Let A be some s-set, so that

A=J Nz

BeX teB

where T} C T, B C Q. We may assume without loss of generality that the family @ of
subsets T} (t € ) is closed with respect to finite intersections and unions (that is, there exist
corresponding surjections @, Uy : d(2) — Q, where d(2) is the set of finite subsets of ).

The set Q will be partially ordered if we put ¢’ < t whenever T; C Ty; let G = Ord Q.
Further, we may assume that each set B € K is directed in (€2,<). Let I be the factor
set of all possible complexes s = [t1,t,...,t,], where t; € |K]|, t; = pris (i = 1,2,...,n,
n € N), with respect to the equivalence relation on the set of ordered n-tuples of elements
of |K| : (t1,ta,....tn) ~ (¢),th,...,t)) if and only if {t1,ta,...,t,} = {t},th,...,t),}. The
set I becomes partially ordered if we put s’ < s, where s = [t1,ta,...,ts], s = [t],th, ..., 1],
whenever for each t; there exists t; such that t;- <t let Q=0rd[.
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By continuing the construction following the method of transformation of indices we
will construct an admissible class F' for Q. For each s = [t1,t2,...,t,] € |F| the subset
Ry = ;- Ty, is defined and moreover if s’ < s then Ry C Ry. Thus a contravariant functor
of the simple Hausdorff spectrum H(A) : |F| — G is defined and moreover

A= N R (2)

FeF scF

It is an essential point that I is a countable set and the family {ﬂ r RS} is a fundamental
system of nonempty compact subsets of A.

Let G be some category. We shall call a covariant functor Hp : @ — G a Hausdorff
spectrum functor if Q@ = |F| for some admissible class F € D. If F = |F| then Hp is a
functor of the direct spectrum, while if F = {|F|} (that is, F consists of a single element
|F| = |F|) then Hp is a functor of the inverse spectrum.

If F is an admissible class for ) and the functor

7| =9,
s — X,
(s/ W S) — (XS — XS,),

(F/ ﬂ) F) = ((Xs)s€|F| - (Xs’)s’E\F’\)

hez :

is injective on objects and morphisms (in the set-theoretic sense), then there exists a directed
class

((XS)SE|F|aQFF’)F’F, cF

of classes (X, hys)s scip| (F € |F|) which are directed in the dual category G° and which
satisfy the following conditions.

h o/ o el
1°. The morphism X, —3 X, is chosen and fixed if and only if the morphism s’ LGP
chosen and then hys : Xg — Xy is the only morphism.

2°. The diagram

hor,
XS =, XS”

hslsl lh‘s/s//
Xy —— Xy

UJS/S// / UJSS/

is commutative for all s” =5 s’ =% s.

3. If (Xo)selp| iy (Xs)se|pr|, then for each Xy (s € |F'|) there exists a unique
morphism hys : Xs — X, (s € |F|). The collection of morphisms hyg (s’ € |F'|) defines
the morphism ¢p/r so that we shall write gprp = (hgs)pp. Each set F' € F is a filter base
of subsets T' C |F| and moreover for each T' € F the class (X, hys)r is directed in the
category GY.

DEFINITION 1. We shall call a class (X5, hys)s ¢ | satisfying conditions 1°-3° a Haus-
dorff spectrum over the category G and we shall denote it by { X, F,hys}.

The direct and inverse spectra of a family of objects are particular cases of Hausdorff
spectra: it suffices to put F = |F|, hys = qp/p in the direct case and F = {|F|}, hys : X5 —
Xy (s = 8), qrp = i) = 4| in the inverse case.

Under a suitable definition of spectral mapping (see the structure of the category D(F'))
the set of Hausdorff spectra over G forms a category which we denote by Spect G. If X =
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{Xs,F,hgs}, Y = {Yp,Fl,hprp} are objects from Spect G, then we shall say that two
Hausdorff spectrum mappings wyx : X — Y and w}y : X — Y are equivalent if for any
F € F there exists F* € F! such that the diagram

Wps
X, =2, Y,

’
wp’sJ/ J{hP*P

* o/

Yp/ _rr. yp*

is commutative for any p* € |F™|.

Now let us consider a new category H (G) whose objects are the objects of the category
Spect G, but the set Homy(X,Y') is formed by the equivalence classes of mappings wy x :
X — Y. We shall denote such classes by [|wy x|

For any objects X, Y, Z € H the law of composition defines a bilinear mapping

Hompy(X,Y) x Hompy(Y,Z) — Hompy (X, Z)

(Hompg (X, Y) is an abelian group).

DEFINITION 2. Let X = {X,, F,hys} be a Hausdorff spectrum over the category G.
We shall call an object Z of the category G a categorical H-limit of the Hausdorff spectrum
X over G if for any objects A, B € G and spectral mappings A 2. X LN B there exists a

unique sequence in G A -~ 7 BN B such that the diagram
A—* 5 X

o[
7z 2 . B

is commutative in the category Spect G.

The concepts of projective and inductive limits over the category G are special cases of
categorical H-limits. For example, let X be the inverse spectrum of objects from G. Then
(Lim) holds and moreover any object X from X can be taken for B € G with the identity
morphism b : Xy — X, forming the spectral mapping b* : X — X, (s € |F|). Thus the
following diagram is commutative

A—25 X

LD
z L. x
where b = (b%), B = (8%), 8°: Z — X5 (s € |F]), b is the identity morphism of the category
Spect G. Therefore the diagram

A2 X

L

Z s, X
is commutative for any object A € G.

The categorical H-limit of a Hausdorff spectrum (the functor Haus) exists in any semi-
abelian category G with direct sums and products (for example, the category of vector
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spaces L, the category T'LC' of topological vector groups, the category T'LC' of locally convex
spaces).

Let © be a countable set and X = {X,, F,hys} a regular Hausdorff spectrum in the
category T LC'; such a spectrum is <siid to be countable. A continuous linear image in the
category TLC of an H-limit X = 1im?;h5/8Xs of Banach spaces X (s € |F|) is called an
H-space. The class of H-spaces contains the Fréchet spaces and is stable with respect to
the operations of passage to countable inductive and projective limits, closed subspaces and
factor spaces. Moreover, a strengthened variant of the closed graph theorem holds for H-
spaces. The class of H-spaces is the broadest of all the analogous classes known at this time,
namely those of Rajkov, De Wilde, Hakamura, Zabrejko—Smirnov. A countable separated
regular H-limit of a Hausdorff spectrum of H-spaces in the category T'LC is an H-space [7].

Throughout this chapter Hausdorff spectra are assumed to be countable unless the con-
trary is explicitly stated.

2. Let Haus : H(T'LC') — L be the covariant additive Hausdorff limit functor from the
semiabelian category H (T LC) to the abelian category L of vector spaces (over R or C). We
recall [11] that by an injective resolvent I of an object X € H (T LC') we mean any sequence

0—Tp 201 2,
formed by injective objects and exact in its members Iy, k > 1, with kerig = X. Any two
injective resolvents of the same object are homotopic to each other. Since there are many
injective objects in the category H(T'LC) [3], each object of this category has at least one
injective resolvent. The right derivatives of the Hausdorff limit functor Haus are defined by

the formula
Haus®(X) = H*(Haus(I)) (k=0,1,...),

where X € H(TLC), I is any injective resolvent of X, Haus(I) is the complex of morphisms
of the category L obtained by application of the functor Haus to each morphism of the
complex I, and H¥(Haus(I)) (k = 0,1,...) are the homologies of the complex Haus(I).
Each morphism X — Y of the category H (T LC) is covered by a morphism I — Y of the
injective resolvents of the objects X and Y (see [11, Chapter V, §1]). From this follows
the existence of morphisms Haus*(X) — Haus®(Y') so that the objects of Haus*(X) do not
depend on the choice of injective resolvent. On the other hand the functor Haus has injective
type [3, p. 88], therefore the canonical isomorphism of functors holds:

Haus = Haus" .
Proposition 3. For every free Hausdorff spectrum E € H(L)
Haus'(E) =0 (i=1,2,...).

We now compute the derived functors Haus’ (i > 1) in the following way (see [2, 10]). Let
X ={X,, F, hys} be an arbitrary Hausdorff spectrum and E the free Hausdorff spectrum
with generators X (s € |F|). Let us consider the sequence of Hausdorff spectrum mappings

0—XE5E2EEE 0, (D)

in which the components of the mapping wgx (i.e. the collection (wrsr)re|p(r), Where
st € T is the unique maximal element in 7" with respect to the direction relation) act
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A~

according to the formula wry, : Zs, — (hsspZsp)ser, while the Hausdorff spectrum mapping
wpp : E — E is formed by means of the morphisms (7}, is a cofinal right-filtering sequence)

Wr*T, * (xs)SETn = (xs* - ﬁs*sTnXsTn)S*eT*

forany T*, T, e F, Fe F, Ty =2, T, 1 CT* CTy, s7, £T* (n=1,2,...).

It is now clear that the sequence (D) is exact; following V. P. Palamodov [2] we shall call
the sequence (D) the canonical resolvent of the Hausdorff spectrum X .

Applying the functor Haus to the canonical resolvent (D) we obtain the sequence of locally

convex spaces
0HH&US(%)_>EBHXS_>EBHXS’
F F F F

where @ 5 [[ X is the direct sum of the products of the X (s € |F|) under the natural
inductive limit topology; this sequence is acyclic and moreover exact from the left.

Proposition 4. Let Haus : H(T'LC) — L and let

0 XX y 22, 70 (D)

be an exact sequence of Hausdorff spectra. Then the following exact connecting sequence is
defined in the category L (6! (i =1,2,...) are the connecting morphisms):

0 — Haus(X) — Haus(Y) — Haus(Z) — Haus'(X)
— ... — Haus" 1(2) Lt Haus' (X) LN Haus'(Y) 2% Haus'(Z) SN

3. In [1] and [2] V. P. Palamodov established the fundamental Theorems 11.1 and 11.2
giving necessary and sufficient conditions for the vanishing at zero Prol(X ) = 0 for the
functor Pro of the projective limit of a countable family of locally convex spaces. We aim
to establish analogous conditions for the vanishing at zero Haus!(X) = 0 for the Hausdorff
limit functor and for the not necessarily countable case.

We recall that in questions concerning the stability of the class of H-spaces with respect
to Hausdorff limits and also in the theorem about the representation of H-spaces by means
of Banach spaces the assumption of regularity of the Hausdorff spectrum was an important
condition. Here it will be necessary to impose the following condition. Let X = { X, F, hys}r
be a Hausdorff spectrum of locally convex spaces and for each T € F' let Vl::r C [Ip X5 be
defined by

V}FTf = {x = (w5) € HXS s = ﬁs’sxm s,s' € T}7
F

equipped with the projective topology with respect to the preimages 7 '7, (s € T), where
ms ¢ [[p Xs — X, is the canonical projection. The corresponding base of neighborhoods of
zero for the projective topology generates the TV G (HF X, O'(T)) (T € F).

Let us form the TVG ([1p X5, 0(r)) with base of neighborhoods of zero VI (T € F).
The Hausdorff spectrum X is said to be regular if (H FXs,0( F)) satisfies the condition:
convergence of a net (a,)yep in the TVG,([]p Xs,0¢1)) (I € F) implies its convergence in
the TVG ([1p Xs,0(r)). If every X, (s € |F|) has the indiscrete topology, then it is not
difficult to see that the first part of the condition for regularity is equivalent to completeness
of (HFXS,O'(F)).

Theorem 1. Let X be a regular Hausdorff spectrum of nonseparated parts over the
category TLC. Then Haus'(X) = 0.
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If Y is a regular Hausdorff spectrum over TLC and X is the Hausdorff spectrum of
nonseparated parts, then it is easy to see that X is also a regular spectrum. In fact, bear-
ing in mind the remark before the theorem, it is sufficient to establish the completeness of
(T1r Xs, U(F)); this TV G is embedded in the corresponding TVG ([]y Yz, O'(lF)). If (ay)yep
is fundamental under o), then a, € a,, + VE (VT € F,v=~(T), v = v(T)) and because
of the closedness of Vi in the latter TV G we obtain the inclusion (a* = limp a.)

a* —ay, €VE (YT €F, 5 = (1)),

which also implies the convergence of (a,) to a* in ([]p Xs,0(m)).
Thus, in the enunciation of Theorem 1 regularity of the Hausdorff spectrum X can be
replaced by regularity of the Hausdorff spectrum Y.

Theorem 2. Let Y be a regular Hausdorff spectrum, X the Hausdorff spectrum of non-
separated parts of Y and) — X — Y — Y/X — 0 an exact sequence of Hausdorff spectra.
Then the sequence 0 — Haus(X) — Haus(Y) — Haus(Y/X) — 0 is exact in the category L.

Let us continue our consideration of the question of exactness of the functor Haus :
H(TLC) — L for an arbitrary exact sequence of Hausdorff spectra 0 — X — Y —
Z — 0. From the proofs given above it is clear that a sufficient condition for the vanishing

at zero Haus'(X) = 0 is the completeness of the TVG (][] XS,O'?F)) for each F' € F (see
Proposition 7.1 of [3]), where I ’("F) is formed by the filtering V£ with respect to 7. At
the same time each space Vg is endowed with the linear topology defined by the inverse
image supy7;'7s (T € F) forming at the same time the TVG (] Xs,0(r)) so that the
VG (H P XS,O'(F)) is not in general metrizable. It turns out that completeness of the

TVG (H 7 X, JE*F)) is also a necessary condition for the vanishing at zero Haus!'(X) = 0.

Proposition 5. Let X = {X,, F,hys} be a countable Hausdorfl spectrum over the
category L. Then in order that Haus'(X) = 0 it is necessary and sufficient that the
TVG( [1rXs, JE*F)) is complete for each F € F.

Theorem 3. Let X = {X,, F,hygs} be a countable Hausdorff spectrum over the cate-
gory L. Then in order that Haus'(X) = 0 it is necessary and sufficient that for each F € F
it is possible to define in [ [ X a quasinorm p = pp > 0 such that

(i) the associated topological group (HF X, T(*F)) is complete, Tp > O’?F),

(ii) p} is continuous on ([]p X, O'EkF)).

<1 Necessity. This follows from the argument before the theorem, since on putting 7p =
O'EkF) and

up(e) = 32 Fdy, (),
k=1

where dr, () = 0 for z € Vg’“ and dp, (z) = 1 for x € [[p Xs\ng (k € N), we obtain (i)
and (ii).

Sufficiency. Let Zp = (i, VI;F’“ and let the factor space [[» Xs/ZF be endowed with the
images of the topologies O'EkF) and 7p, so that, if

dp(€) = inf pp(z) and dp(¢) = inf ; 27 g (2),
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the MV G([[r Xs/ZF,dF) is separated and complete and the MV G([] X./Zp,dp) is sep-
arated. Thus on the MV G([[p Xs/ZF,dF) the functional dr is countably semiadditive and

ap(€) = inf_lim_dp(n) = inf 4} (z)
En—En—00 TSI

is continuous on it. Hence by the Lemma on a countably semiadditive functional [8] we obtain
dr = d}, and, consequently, the MV G([[p Xs/ZF, d~F) is complete. But this means that the
TVG(]] 7 Xs, UE‘F)) will be complete, which allows us to conclude on considering all F' € F
that Haus'(X) = 0. The Theorem is proved. >

In the case of a countable inverse spectrum, in particular, we obtain the first part of
Theorem 11.1.1 of [1]; in the case of a direct spectrum X the topology 7r is indiscrete for
each singleton set F' € F. Moreover, the famous lemma of V. P. Palamodov [1], which makes
up the main part of the proof, is a special case of the lemma about a countably semiadditive
functional [8].

In what follows @7 denotes the filter topology on X, (s € |F|), which is formed by the
spaces {ﬁssrXS/} (s' € |F|). We note, however, that the product topology on [[ X, obtained
from the topologies % (s € |F|) does not in general coincide with the topology O'EkF).

Sufficient conditions for the vanishing at zero Haus!(X) = 0, which are more convenient
for applications, are given in the following proposition.

Theorem 4. Let X = {X,, F,hys} be a countable Hausdorff spectrum over the cate-
gory L. In order that Haus'(X) = 0 it is sufficient that for each s € |F| it is possible to define
in X a family of quasinorms {pg, } which determines a complete separated pseudotopological
vector space (X, pg,), preserves the continuity of the morphisms ils's and is such that for
each s € |F|, F € F the following condition is satisfied:

(A) for some (5 = (35(F) the functional pj; is continuous in the filter topology (X, ¢%).

In particular, in the case of an inverse spectrum X we obtain Theorem 5.1 of [2] and
moreover our assertion is even stronger in this case.

Theorem 5. Let X = {X;, F,hys} be a countable Hausdorff spectrum of separated
H-spaces over the category TLC. Then in order that Haus'(X) = 0 it is necessary and
sufficient that the spaces (X, ¢%) (s € |F|) are complete TV Gs for each F € F.

In the case of an inverse spectrum of Fréchet spaces Theorem 5 extends the criteria (F) and
(R) of V. P. Palamodov’s Corollary 11.4 in [1]. We note that in Theorem 5 it is separatedness
of the pseudotopology which is actually required, therefore in general the H-space may be
nonseparated.

Theorem 6. Let X = {X,, F,hy,} be a countable Hausdorff spectrum of H-spaces
over the category TLC with separated associated pseudotopology {(p%*)*} which preserves
the continuity of the morphisms hy,. Then in order that Haus'(X) = 0 it is necessary and
sufficient that for each s € |F| there exists a quasinorm pg*(F) (s € |F|) in X, such that

(A%) (pf*)* is continuous in the filter topology % and the system {pl*} preserves the
continuity of the morphisms hg .

In particular the theorem by Retakh [9] follows from Theorem 6.
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NCITIOJIBBOBAHUE I'OMOJIOTMTYECKNX METOIOB
HA BA3E UTEPUPOBAHHBIX CIIEKTPOB
B ®OYHKINMOHAJIBHOM AHAJIN3E

Cwmupnos E. 1.

B cratbe BomsiTCst HOBBIE TOHATHS (DYHKIIMOHAJIHHOTO aHAIN3A: XayCAOPMOB CIEKTP U XaycaopdoB mpe-
nen wim H-npenen xaycnopdoBa CIIEKTpa B KATETOPHMHU JIOKAJIBHO BBIMYKJIBIX TPOCTPAHCTB (MK JaxKe,
B Gostee oBmux moJryabesIeBbIX KATeropusx). JacTHBIME CIydasMU PeryjsipHoOro xaycmopdgosa mpenesa
SABJISIOTCS] TPOEKTUBHBIN W WHIYKTUBHBIA TPEIEIbl OTAEIUMBIX JIOKAJIBHO BBIMYKJIBIX MPOCTpaHcTB. Ho-
BRI Kjacc H-mpocTpaHCTB comepKuT mpocTpancTBa Pperre n 3aMKHYT OTHOCUTEIBHO OMEPAIlnil B3ATUS
CYETHOr'O WHJIyKTUBHOI'O ¥ IPOEKTHUBHOI'O IIPEJIEJIOB, IEPEX0/Ia K 3aMKHYTOMY IIOJIIPOCTPAHCTBY U (DaKTOP-
mpocTpaHcTBy. Bosee Toro, qis H-TpoCcTpaHCTB CIPaBeI/INB YCUIEHHBI BADUAHT TEOPEMBI O 3aMKHYTOM
rpacdure. Jlokazanbl Teopembr 06 oOpaleHnn B HY/Ib IEPBOIl TPOM3BOIHON (DyHKTOpa Xaycaopdosa mpe-
JieJia CPefCTBAMH MOMOJIOIMYECKON aIreGphl.

KuroueBble cjioBa: TOMOJIOTHsI, CIEKTD, 3aMKHYTHIN rpaduk, auddepeHInalbHble yPABHEHUsI, TOMOJIO-
IUYIECKHE METOJbI, KATErOPUsl.



