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Abstract. Extended real-valued functions on a real vector space with uniform sublevel sets are important
in optimization theory. Weidner studied these functions in [1]. In the present paper, we study the class
of these functions, which coincides with the class of Gerstewitz functionals, on cones. These cone are not
necessarily embeddable in vector spaces. Almost any Weidner’s results are not true on cones without extra
conditions. We show that the mentioned conditions are necessary, by nontrivial examples. Specially for
element k from the cone &2, we define k-directional closed subsets of the cone and prove some properties of
them. For a subset A of the cone &, we characterize domain of the ¢4, (function with uniform sublevel
set) and show that this function is k-transitive. One of the important conditions for satisfying the results,
is that k has the symmetric element in the cone. Also, we prove that, under some conditions, the class of
Gerstewitz functionals coincides with the class of k-translative functions on Z.
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Introduction

The Gerstewitz functionals are suitable tools for studying in optimization, decision theory,
mathematical finance for certain targets. The formula for the functionals introduced under
more restrictive assumptions in [2]. The functionals in [3] and [4] were used in separation
theorems for nonconvex sets and applied to scalarization in vector optimization. A descent
method for the solution of set-valued optimization problems by means of the Gerstewitz
functionals was presented in [5].

Some important mathematical setting, however, while close to the structure of vector
spaces do not allow subtraction of their elements or multiplication by negative scalars. For
example, the collection of convex subsets of vector spaces which are of interest in various
contexts, do not form vector spaces. The classes of functions that may take infinite values
or characterized through inequalities rather than equalities can be another example of this
kind. These type of examples may not even be embedded into larger vector spaces. The cones
includes most of these settings. These cones developed in [6] and [7] as the theory of locally
convex cones by means of an order theoretic structure or a convex quasiuniform structure.

Many of properties in functional analysis studied in locally convex cones (for examples,
see [8-11].
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A cone is defined to be a commutative monoid & together with a scalar multiplication
by nonnegative real numbers satisfying the same axioms as for vector spaces; that is, & is
endowed with an addition (z,y) — x+y: £ x & — & which is associative, commutative
and admits a neutral element 0, i.e. it satisfies:

v+ (y+2)=(x+y) + 2,
r+y=y+uwz,
r+0=ux,

for all z,y,z € &, and with a scalar multiplication (r,z) — r -z : Ry x & — & satisfying
for all z,y € & and r,s € Ry:

r-(@ty)=r-z+r-y,
(r+s)-x=r-x+s-x,
(rs)-x=r-(s-x),
l-x=ux,
0-z=0.

The extended real numbers system R = R U {+oc} is a cone endowed with the usual
algebraic operations, in particular a + (+00) = +oo for all a € R, a - (+00) = 400 for all
a>0and 0-(4+o00) =0.

For cones & and 2 a mapping t : &2 — 2 is called a linear operator if t(a+b) = t(a)+t(b)
and t(aa) = at(a) hold for a,b € & and a > 0.

A linear functional on a cone &2 is a linear mapping p: & — R.

In this paper, we study the class of these functions, which coincides with the class of the
Gerstewitz functionals, on cones. Almost any weidner’s results are not true on cones without
extra conditions. We show that the mentioned conditions are necessary, by examples.

1. Functions with Uniform Sublevel Sets

Let # beacone, AC X, ke P, neRiand M CR. We define

A+nk={x+nk: x € A}, (1)
A—-nk={x e P: x+nkec A}, (2)
A+MEk= | {a} +mk. (3)
meM,
acA

In the definition of A — nk, we note that a member of a cone does not necessarily have an
additive symmetry. It is easy to see that A+nk is just the set A shifted by nk and A—nk is the
largest set which, if it is shifted by nk, is contained in A, i.e. for each B C & that B4+nk C A,
we have B C (A—nk). Also 0T A:={u € P : a+tuc Aforallac A, t € R} denotes the
recession cone of A. For a functional ¢ : &2 — R := RU{—00, +-00}, we use its effective domain
dom ¢ :={y € & : ¢(y) € RU{—o0}} and its epigraph epi ¢ := {(y,t) € ZZ xR : p(y) < t}.

The sublevel sets of ¢ are sublev,(t) := {y € & : p(y) < t} witht € R. Also, we set
inf @ = +o00.

DEFINITION 1.1. Let &2 be a cone and A a subset of &2. The k-directional closure clj(A)
of A consists of all elements y € & with the following property: For each A € Rs = {z €
R : 2 > 0}, there exists some t € Ry with ¢ < X such that y € A + tk.
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A is said to be k-directionally closed if A = cli(A).
The following three lemmas are in the state of vector spaces in [1].

Lemma 1.1. Let A be a subset of the cone &?. A is k-directionally closed if and only
if, for each y € &2, we have y € A whenever there exists some sequence (t,), € N of real
numbers with t, \,0 and y € A + t, k.

Lemma 1.2. Let A be a subset of the cone &.

(a) A Cclg(A).

(¢) clg(A+y) =clg(A) +y for each y € &

< (a) is clear (t = 0). For (b), let a € clg(A) and A € Rs be arbitrary. Then there exists
some t € Ry with ¢t < A such that a € A+ tk C B + tk. Then a € clg(B). For (c), we have
x € clp(A+vy) if and only if for each A € R+, there exists some ¢t € Ry with ¢ < A such that
r€A+y+th=A+tk+yifand only if x € clx(4) +y. >

Lemma 1.3. Let A be a subset of the cone &. If k € 0" A, and there exists —k € &
such that k+ (—k) = 0, then cl_,(A) consists of all elements y € & for which y+ tk € A for
allt € R.

< Let y € cl_g(A). Then for each ¢t € Ry, there exists some t' € Ry with ¢’ < ¢ such that
y € A+ t'(—k) and so y + t'k € A. This yields y + t'k + (t — t')k € A since k € 0T A. Hence
y+tke AforallteRs.

On the other hand, if y + tk € A for all t € R, then y € A+ t(—k) for all £ € Ry and so
Y € lek(A).

Proposition 1.1. Let & be a cone and A C 2. Then

(A—nk)+mk C A+ (m—n)k C (A+mk)—nk

for all k € & and n,m € Ry. Furthermore if mn > 0 or there exists —k € & such that
k+ (—k) =0, then
(A+nk)+mk= A+ (m +n)k,
for all n,m € R.
< Let y € (A — nk) + mk.

ye (A—nk)+mk < 3JxcA-—-nk,y=zxz+mk <& z+nkcAy=x+mk. (4)

We have two cases:
Case I. Let n > m > 0. We have z+nk = x+mk+(n—m)k. Now (4) implies y+(n—m)k €
A which is equivalent to y € A+ (m — n)k. This yields that

(A —nk)+mk C A+ (m —n)k.

Let y € A4 (m—n)k. This means that y € A—(n—m)k. We have y+(n—m)k € A by (2).
Adding mk to both sides, it follows that y+nk € A+mk. This yields that y € (A+mk) —nk.
We have

A+ (m—n)k C (A+mk) —nk.

Case II. Let m > n > 0. Then (4) is equivalent to y = x + nk + (m — n)k, which implies
that y € A+ (m — n)k. This yields

(A—nk)+mk C A+ (m —n)k.
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By the similar proof to case I, we have the second inclusion, i. e.
(A —nk)+mk C A+ (m —n)k.
For the second part, first let n,m > 0. We have

y€ (A+nk)+mk< Iz e A+nk, y=x+mk
S dze A r=z+nk
Sy =z+nk+mk
Sy=z+m+mk
SycA+(n+m)k.

Also

y € (A—nk)—mk<y+mkeA—nk
Sy+mk+nkeA
Sy+(n+mkeA
sye A+ (—n—m)k.

Now, let there exists —k € &2 such that k + (—k)=0. Let ¢t > 0 be arbitrary. We have

yeA—thesy+the A
S y+thk+t(—k)e A+t(—k)
S yeA+t(—k).

Then A —tk = A+ t(—k), for all ¢ > 0. Therefore

y€ (A+mk)—nk< Iz e A y+nk=xz+mk
s y+m(—k)=x+n(—k) € A+n(—k)
&y (A+n(—k)) - m(-k)
<y e (A—nk)+ mk.

Then
y € (A4 mk) —nk = (A —nk) +mk. >

The following example shows that if —k ¢ &7 and mn < 0, we do not necessarily have
(A+nk)+mk=A+ (m+n)k.

EXAMPLE 1.1. The cone R = R U {+oc}, with the usual algebraic operations (especially
0 (4+o00) = 0), is a cone which is not embedded in any vector space. Let A = [0, +o0],
k=+4+ccand —-n=m>0.S0 A+nk=A—(—nk)={z€R : x4+ (-nk)e A} ={z€R :
x4+ (+00) € A} = R and then (A+nk)+mk = {+oo}. But A+ (m+n)k = A+0-(+00) = A.
So (A +nk) +mk G A+ (m+n)k.

In the following proposition, which is similar to Proposition 3.1 in [1], we construct
functions on cones with the following properties.

Proposition 1.2. Let & be a cone. Consider a functional ¢ :  — R.
(1) sublevy(t) = sublev,(0) + tk for all t € R.

(2) epi p ={(y,t) € Z xR : y € sublev,(0) + tk}.

(3) p(y) =inf{t € R : y € sublev,(0) +tk} for ally € Z.
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4) p(z) =p(y) + A forall N e R, y € & and x € { y} + A\k.
We call that (4) is the k-transitivity for the mapping .

Then we have (1) <= (2) = (3).

Moreover, if there exists —k € &, such that k + (—k) = 0, then (3) = (4) = (1) and
so all statements are equivalent.

< (1) <= (2) is straightforward.

(2) = (3) is similar to Proposition 3.1 from [1].

Now, let there exists —k € &7 such that k + (—k) = 0.

For (3) = (4), let A\ € R be arbitrary, y € & and x € {y} + \k. If A <0, then by the
definition = + |A|k € {y}. Then x + |A|k = y and so (3) implies

¢(z) = inf{t e R: x € sublev,(0) + tk}
=inf{t € R: x4 ||k € sublev,(0) + tk + |A|k}
=inf{t € R: y € sublev,(0) + (t + [A|)k}
=¢(y) = Al = ply) + A
If X\ >0, then z € {y} + Ak implies © = y + A\k. We have y € {y + Ak} + (—=A\)k and so

y € {z} + (—A)k. Now by the previews case, we conclude that ¢(y) = ¢(z) + (—A) and so
p(z) = @(y) + A
For (4) = (1) we have
sublev,(0) +tk = {y +tk: ¢(y) <0,y € Z}
={zxeZ: px+ (—tk)) <0} (x:=y+th <= y=2x+(—tk))
={zeZ: ¢ <0} (by (4))

x)—t
={r e Z: p(x) <t} =sublevy,(t).

—~ o~

Then (4) = (1) was proved. >
REMARK 1.1. We note that (4) implies sublev,(0) + tk C sublev,(t) generally. Indeed,
for all t € R, we have:
sublev,(0) +tk = {y +tk: ¢(y) <0,y € £}
={rxeP: Jye{z} —tk, o(x —tk) <0} (x:=y+th<=yec {z}—tk)
={zreZ: Jye{x} —tk, p(x) —t <0}
={r e Z: Jyec{z} —tk, p(x) <t} Csublevy(t).

~ <+

The following example shows that (4) does not necessarily imply (1) even the cancelation
law holds for k (a +k=b+k <= a =0 for all a,b € ).

EXAMPLE 1.2. Consider the cone R. Let ¢(y) = y (the identity mapping). By assuming
k =1, we have a + k = b+ k implies a = b for all a,b € Ry. Let A € R be arbitrary. For
each z,y € Ry with z € { y} + Ak, we have p(z) = ¢(y) + . This shows that (4) holds. On
the other hand, sublev,(0) = {0}. Then sublev,(0) + Ak = {A}, but sublev,(\) = [0, ] for
A > 0. This conclude that (1) dose not hold for A > 0.

We note that sublevy,(0) + Ak = sublevy,(X) = 0 for A < 0.

Now, we define functional with uniform sublevel sets is of the following type, which is
often referred to in the literature as the Gerstewitz functional.

DEFINITION 1.2. Let A be a subset of the cone &. The function ¢4 : & — R is defined
by

oar(y) =inf{t e R:y € A+ tk}.
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Proposition 1.3. Let A be a subset of the cone &?. We have
(1) dom ¢4 = A+ Rk. Moreover, if there is —k € & such that k + (—k) = 0, then
(2) pa is k-translative.
(3) A+thk Csublevy,  (t) for all t € R.
(4) The condition
sublevy, , (t) = A+tk forall teR

holds if and only if —k € 0T A and A is k-directionally closed.

< (1) follows immediately from the definition of ¢4 .
Now, let —k € &, such that k + (—k) = 0. For (2) let A € R be arbitrary, y € & and
x € {y} + Ak. If A <0, then by the definition x + |A|k = y and

par(x +|Ak)=inf{t e R: x4+ Ak € A+tk}
=inf{t e R: z+ |Mk+ |\(—k) € (A+tk)+|\(—k)}
=inf{teR: x € A+ (t — |A\))k} (by Proposition 1.1)
=par(®)+ A

If X\ > 0, then € {y} + Ak implies = = y + Ak. We have y € {y + Ak} + (—\)k and so
y € {z} + (=A)k. Now by the previous case, we conclude that ¢4 ;(y) = pa () + (=) and
50 pak(T) = Pakr(y) + A

For (3), it is easy to see that A C sublev,, ,(0). We have

A+ tk Csublev,, , (0) +tk (5)

={y+thk: arly) <0, ye 2}
={reZ: pap(r—tk) <0}

— e P pan@)—t <0} (by (2))
={r € Z: par(r) <t} =sublev,, (1)

For (4), let A be a k-directionally closed set such that —k € 0T A. Let y € sublev,,, , (0).
We have v 1(y) < 0. If 94 1(y) < 0, then there exists ¢ > 0, such that y € A — tk and so
y € A+ t(—k). Then y € A (since —k € 0T A). Now, if w4 x(y) = 0, then for each positive
real \ there exists 0 < ¢t < X such that y € A + tk. This yields that y € clx(A). Since A is
k-directionally closed, so y € A. This shows that sublev,,, , (0) € A. Then A = sublev,,, , (0).
We conclude that A+tk = sublev,,(0)+tk. By considering (5), we have sublev,,, , (t) = A+tk.

Conversely, by the assumption, we have A = sublev,,,, (0) (take t = 0). Let y € clx(A) be
arbitrary. Then for each A € R there exists ¢ € Ry with ¢ < A such that y € sublev,, , (0) +
tk = A+ tk. Then p4.(y) < 0 and so y € sublev,,,(0) = A. This shows that A is k-
directionally closed. Now let y € A. For each t € R, we have y+t(—k) € A+t(—k) = A—tk
and 5o @4 x(y +t(—k)) < 0. Then y +t(—k) € sublev,, , (0) = A for each ¢ € R, . This yields
that —k € 0t A. >

Corollary 1.1. Assume ¢ : & — R has uniform sublevel sets described by (1) in
Proposition 1.2. If —k € &2, then each of these sublevel sets is k-directionally closed, and
—k belongs to the recession cone of each of these sublevel sets.

< By Proposition 1.2 we have ¢ = ¢pa for A = sublev,(0). Also the statement (1)
in this proposition implies that sublev,(t) = sublevy, ,(t) = A + tk for all ¢+ € R. Thus,
Proposition 1.3 yields —k € 07 A and that A is k-directionally closed. Hence, for each t € R,
—k € 0 (A + tk) and A + tk is k-directionally closed by Lemma 1.2 (c). >



62 Dastouri, A. and Ranjbari, A.

Theorem 1.1. Let A be a subset of the cone &. Consider A := sublevy, , (0). If -k € &
such that k + (—k) = 0, then
(1) A is the unique set for which

sublev,,  (t) = A+tk forall teR (6)

holds.
(2) A is the unique set with the following properties:

(a) A is k-directionally closed,
(b) —k € 0t A\{0} and

(c) pa,i coincides with ¢ ;, on .
(3) A is the k-closure of A — R, k. It consists of those points y € 2 for which {y} —tk C
A — R4k holds for each t € R-.

< The proof is similar to the proof of Theorem 3.1 in [1]: Set A := sublevy,, , (0).
By Proposition 1.3, ¢4 is k-translative. Thus, Proposition 1.2 implies (6) and

oar(y) =inf{tcR:y e A+ tk}.

Hence par = ¢j, , and (6) yields
sublev,, . (t) = A+ tk

for all t € R. By Proposition 1.3, (2a) and (2b) are satisfied.

For (3), we have A C A. This implies A — R,k C A by (2b) and thus cli(4 — Ry k) C
cly (fl) = A. Let y € A. By the definition of @A i there exists a sequence (t,,)nen With ¢, € Ry
and t,, — 0 such that

Yy €A+ oar(y)k+t,k CA—Ryk+t,k

holds for each n € N. Hence y € cly(A—R k), and A = cl(A—R, k). Since (A—R, k)—R, k C
A — R4k, we have —k € 07(A — Ry k). Thus, the second statement of (3) results from
Lemma 1.3. The uniqueness of A satisfying (1) is obvious.

For uniqueness of A in (2), assume now that (2a)-(2c) hold for some set B C 2.
Relations (2a) and (2b) imply

sublevy,  (t) = B+tk forall t €R,
by Proposition 1.3. By (2¢) for ¢ = 0 in the above relation, we have
B = sublev,, , (0) = sublev,, , (0). >

Consequently, the class of the Gerstewitz functionals turns out to be equivalent to the class
of functions with uniform sublevel sets generated by a linear shift of some set into a specified
direction. Theorem 1.1 yields together with Proposition 1.2 the following theorem.

Theorem 1.2. Let A be a subset of the cone &. For each k € Z\{0} such that —k € &
with k + (—k) = 0, the class of the Gerstewitz functionals {¢a : A C &} coincides with
the class of k-translative functions on & and with the class of functions ¢ : & — R having
uniform sublevel sets describe by (1) in Proposition 1.2.
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In the following example we illustrate Theorem 1.1 and Theorem 1.2 on a cone which is
not a vector space.

EXAMPLE 1.3. Let E will be a real vector space and & = Conv(E) be the cone of all
non-empty convex subsets of E, endowed with the usual addition and multiplication of sets
by non-negative scalars, that is A = {aa | a € A} and A+ B={a+0b|a€ A, be B}
for A,B € Conv(E) and a > 0. We note that & is not a vector space. Let A C E and
o/ = Conv(A). We have o/ C Conv(E). Let k € E such that —k € 0T A. The sets K = {k}
and —K = {—k} are elements of & = Conv(FE) such that K 4+ (—K) = {0}. Also we have
—K € 07/ Indeed, if X € &, then x+t(—k) € A, forallz € X and t € R, since —k € 0T A.
Then X + t(—K) € /. The Gerstewitz functional ¢ g is an extension of p4; to &2 and
@ Kk satisfies Theorems 1.1 and 1.2.

In the following, we construct two examples by using Examples 3.1 and 3.2 from [1].

EXAMPLE 1.4. Let & = Conv(R?) , C = {(y1,y2) € R? : y; > 0} U {(y1,92) € R?
y1 =0, y2 = 0} and o := Conv(C). It is easy to see that C introduce the lexicographic order
on R?. The recession cone 07 .o7 of & is jast <.

Consider the element — % = {(1,0)} of the cone 0".«7. By considering .#" = {(—1,0)},
we have " + (=) = {(0,0)}. Let B € &. We define y; g := inf{y; : (y1,y2) € B} and
yo.B = inf{y2 : (y1,y2) € B}. Then

—y1,B, if y1,B # —00,
o ,x(B) = { .
400, if y1,B = —o0.

o/ is not # —directionally closed, since D = {(0, —1)} belongs to cl »(7), but not to <.
But the set & := sublev,,, ,(0) = {B € Conv(R?) : y1p > 0} is  —directionally closed.

It is easy to verify that the statements of Theorem 1.1 hold for .
EXAMPLE 1.5. Let the cone o7 be as the same of Example 1.4 with # = {(0,—1)}. Then

domgogy#g:{BGe@ : y17B>0}ﬂ{BE<@ : yl,BZO, y27B7§—OO},

and
400, if y1.8 <0,
+00, if Y1,B = O, Y2,B = —0Q,
Yo (B) = .
—yo.B, if y15=0, Yo p # —00,
—00, if y1.8>0.

We see that o coincides with sublevy,, . (0) and &/ is # —directionally closed.

REMARK 1.2. If we consider R? as a subcone of & in the Examples 1.4 and 1.5, the
functions ¢, » are extensions of the functions ¢4 5 in Example 3.1 and 3.2 in [1].
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Awnunoraiusi. Pacimvpennble BelecTBEHHO3HAYHBIE (DYHKIIMY B BEIIECTBEHHOM BEKTOPHOM ITPOCTPAHCTBE
C OJIHOPOJHBIMU MHOXKECTBAMM II0J/[yPOBHEN BayKHbI B TEOpHWM ONTHMU3aIuu. B Hacrosmeil pabore usy-
qaeTcsl KJIAcC TUX (PYHKIUN, COBNAJMAIONIMI ¢ KyaccoM (yHKImoHayioB [epiireBuiia Ha KOHycax. 3TH
KOHYCBI, BOOOIIE TOBOpsi, HE BJIOXKUMBI B BEKTODHBIE NMPOCTpaHCTBa. llouTn Bce pe3ysnbrarhl BeiimgHepa
u3 [1] HeBepHBI Ha KOHyYCax 6€3 JONOJHUTEILHBIX yeaoBuil. Ha HeTpUBHAIBHBIX TPUMEPAX TOKA3BIBAETCH,
9TO YIOMSIHYTBIE YCIOBUsT HeoOxomuMbl. st sjemenTa k u3 KoHyca & Ompenesiorcs: k-HalpaB/ieHHbIE
3aMKHYTBIE ITOJMHOXKECTBA KOHYCA U JIOKA3BIBAIOTCSI HEKOTOpBIE UX cBoiicTBa. [l mogMHOXKecTBa A KO-
Hyca & moslydeHa XapakTepusanus obJIacTy onpeaenenus @4, (GYHKINS ¢ pABHOMEPHBIM MHOKECTBOM
[IOZYPOBHEl) U MOKA3aHO, ITO 9Ta (PYHKIMS k-TPAH3UTUBHA. YCTAHOBJIEHO TAaKXKe, YTO IPH HEKOTOPBIX
YCJIOBUSX KJIacC (DYyHKIMOHAJIOB [ epIiTeBuila COBIAIAET C KJIACCOM Kk-TPaHCSIIMOHHBIX (DYHKIUN Ha PP .
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