Аннотация: В настоящей работе обобщены неравенства Островского на шкале времени для \(n\) точек и \(L_p\)-норм \(m\)-й производной, где \(m,n \in \mathbb{N}\) и \(p \in
[1,+\infty]\).
Ключевые слова: неравенства ошибок, \(n\) узлы, шкала времени
Образец цитирования: Фам Чонг Тиен, Зунг Ф. Т., Зуй В. Н. Неравенства для некоторых новых квадратурных формул с весом // Владикавк. мат. журн. 2014. Том 16. Выпуск 3. С.9-21. DOI 10.23671/VNC.2014.3.10229
1. Anastassiou G. A., Dragomir S. S. On some estimates of the remainder in Taylor's formula // J. Math. Anal. Appl.---2001.---Vol. 263.---P. 246--263.
2. Bohner M., Mathtthewa T. Ostrowski inequalities on time scales // J. Inequal. Pure Appl. Math.---2008.---Vol. 9(1).---Article 6.---8 p.
3. Bohner M., Mathtthewa T. The Gruss inequality on time scales // Commun. Math. Anal.---2007.---Vol. 3(1).---P. 1--8.
4. Dragomir S. S., Wang S. An inequality of Ostrowski Gruss's type and its applications to the astimation of error bounds for some special means and for some numercial quadrature rules // Comput. Math. Appl.---1997.---Vol. 33.---P. 15--20.
5. Huy V. N., Ngo Q. A. New inequalities of Ostrowski-like type involving \(n\) knots and the \(L_p\)-norm of the \(m\)-th derivative // Appl. Math. Lett.---2009.---Vol. 22.---P. 1345--1350.
6. Huy V. N., Ngo Q. A. A new way to think about Ostrowski-like type inequalities // Comput. Math. Appl.---2010.---Vol. 59.---P. 3045--3052.
7. Huy V. N., Ngo Q. A. New inequalities of Simpson-like type involving \(k\) nots and the \(m\)-th derivative // Math. Comput. Modelling.---2010.---Vol. 52.---P. 522--528.
8. Hilger S. Ein Ma\(beta\)kettenkalkul mit Anwendung auf Zentrmsmannigfaltingkeiten.---PhD thesis.---Univarsi. Wrzburg, 1988.
9. Huy V. N., Ngo Q. A. New inequalities of Simpson-like type involving \(k\) nots and the \(m\)-th derivative // Math. Comput. Modelling.---2010.---Vol. 52.---P. 522--528.
10. Matic M. Improvement of some inequalities of Euler--Gruss type // Comput. Math. Appl.---2003.---Vol. 46.---P. 1325--1336.
11. Liu W., Ngo Q. A. A generalization of Ostrowski inequality on time scales for \(k\) points // Appl. Math. Comput.---2008.---Vol. 203(2).---P. 754--760.
12. Ostrowski A. M. Uber die absolutabweichung einer differentiebaren funktion vom ihrem integralmitelwert // Comment. Math. Helv.---1938.---Vol. 10.---P. 226--227.
13. Ujevic N. Error inequalities for a quadrature formula of open type // Rev. Colombiana Mat.---2003.---Vol. 37.---P. 93--105.
14. Ujevic N. Error inequalities for a quadrature formula and applications // Comput. Math. Appl.---2004.---Vol. 48.---P. 1531--1540.
15. Ujevic N. New error bounds for the Simpsons quadrature rule and applications // Comput. Math. Appl.---2007.---Vol. 53.---P. 64--72.
16. Ujevic N. Sharp inequality of Simpson type and Ostrowski type // Comput. Math. Appl.---2004.---Vol. 48.---P. 145--151.
17. Nikol'ski S. M. Quadrature formulas.---M.: Nauka, 1974.---224 p.---[in Russian].
18. Krylov V. I. Approximating computation of integrals.---M.: Nauka, 1967.---500 p.---[in Russian].
19. Bernstein S. N. About Cotes's and Chebyshev's quadrature formulas, Collection of theses.---M.: Nauka, 1954.---Vol. 2.---P. 200--204.---[in Russian].
20. Bernstein S. N. About one system of undefined equations, Collection of theses.---M.: Nauka, 1954.---Vol. 2.---P. 236--242.