ISSN печатной версии 1683-3414 • ISSN он-лайн версии 1814-0807 | |||
Войти |
КонтактыАдрес: Россия, 362025, Владикавказ,
|
Уважаемые авторы, просим обратить внимание! Подача статьи осуществляется только через личный кабинет электронной редакции. DOI: 10.23671/VNC.2019.1.27645 Критерий равномерной обратимости регулярных аппроксимаций одномерных сингулярных интегральных операторов на кусочно-ляпуновском контуре
Аннотация:
Работа продолжает исследования в области критериев применимости к полным сингулярным интегральным операторам приближенных методов по семействам сильно аппроксимирующих их операторов с "вырезанной" особенностью ядра Коши. Рассматривается случай полного сингулярного интегрального оператора с непрерывными коэффициентами, действующего в \(L_{p}\)-пространстве на замкнутом контуре. Предполагается, что контур является кусочно-ляпуновским и не имеет точек возврата. Задача сводится к получению критерия обратимости элемента некоторой банаховой алгебры. Исследование проводится с помощью локального принципа Гохберга - Крупника. Основной акцент сделан на локальном анализе в угловых точках. Для этого используется аналог предложенного И. Б. Симоненко метода квазиэквивалентных операторов. Критерий формулируется в терминах обратимости некоторых интегральных операторов, сопоставляемых угловым точкам и действующих в \(L_{p}\)-пространстве на вещественной оси, и условиях сильной эллиптичности в точках контура, в которых выполняется условие Ляпунова.
Ключевые слова: условие Ляпунова, кусочно-ляпуновский контур, полный сингулярный интегральный оператор, сходимость приближенного метода, равномерная обратимость, локальный принцип
Язык статьи: Русский
Загрузить полный текст
Образец цитирования: Абрамян А. В., Пилиди В. С. Критерий равномерной обратимости регулярных аппроксимаций одномерных сингулярных интегральных операторов на кусочно-ляпуновском контуре // Владикавк. мат. журн. 2019. Т. 21, вып. 1. С. 5-15. DOI: 10.23671/VNC.2019.1.27645. DOI 10.23671/VNC.2019.1.27645 ← Содержание выпуска |
| |
|||
© 1999-2024 Южный математический институт | |||