Уважаемые авторы, просим обратить внимание!
Подача статьи осуществляется только через личный кабинет электронной редакции.
DOI: 10.46698/d4945-5026-4001-v
Полудифференцирования в первичных кольцах
Раза М. А. , Рехман Н.
Владикавказский математический журнал. 2021. Том 23. Выпуск 2.С.70-77.
Аннотация: Пусть \(\mathscr{R}\) - первичное кольцо с расширенным центроидом \(\mathscr{C}\) и с фактор-кольцо Матриндейла \(\mathscr{Q}\). Аддитивное отображение \(\mathscr{F}:\mathscr{R}\rightarrow \mathscr{R}\) называют полупроизводной, ассоциированной с \(\mathscr{G}: \mathscr{R}\rightarrow \mathscr{R}\), если \(\mathscr{F}(xy)=\mathscr{F}(x)\mathscr{G}(y)+x\mathscr{F}(y)= \mathscr{F}(x)y+\mathscr{G}(x)\mathscr{F}(y)\) и \(\mathscr{F}(\mathscr{G}(x))=\mathscr{G}(\mathscr{F}(x))\) для всех \(x,y\in \mathscr{R}\). В этой работе мы исследуем и описываем строение первичных колец \(\mathscr{R}\), удовлетворяющих условию \(\mathscr{F}(x^m\circ y^n)\in \mathscr{Z(R)}\) для всех \(x, y \in \mathscr{R}\), где \(m,n\in\mathbb{Z}^+\) и \(\mathscr{F}:\mathscr{R}\rightarrow\mathscr{R}\) - полупроизоводная с автоморфизмом \(\xi\) кольца \(\mathscr{R}\). Далее, в качестве приложения нашего теоретико-кольцевого результата мы обсуждаем природу \(\mathscr{C}^*\)-алгебр. Точнее, для любой примитивной \(\mathscr{C}^\ast\)-алгебры \(\mathscr{A}\). Точнее, для любой примитивной \(\mathscr{C}^\ast\)-алгебры \(\mathscr{A}\) получаем следующее. Если антиизоморфизм \(\zeta:\mathscr{A}\to\mathscr{A}\) удовлетворяет соотношению \((x^n)^\zeta+x^{n*}\in\mathscr{Z}(\mathscr{A})\) для всех \({x,y}\in \mathscr{A},\) то \(\mathscr{A}\) служит \(\mathscr{C}^{*}-\mathscr{W}_{4}\)-алгеброй, т.е., \(\mathscr{A}\) удовлетворяет стандартному тождеству \(\mathscr{W}_4(a_1,a_2,a_3,a_4)=0\) for all \(a_1,a_2,a_3,a_4\in\mathscr{A}\).
Образец цитирования: Raza M. A. and Rehman N. A Note on Semiderivations in Prime Rings and \(\mathscr{C}^*\)-Algebras // Владикавк. мат. журн. 2021. Т. 23, № 2. C. 70-77. DOI 10.46698/d4945-5026-4001-v
1. Beidar, K. I., Martindale III, W. S. and Mikhalev, V.
Rings with Generalized Identities, Pure and Applied Math., vol. 196, New York, Dekker, 1996.
2. Bergen, J. Derivations in Prime Ring, Canadian Mathematical Bulletin, 1983, vol. 26, no. 3, pp. 267-270. DOI: 10.4153/CMB-1983-042-2.
3. Bresar, M. Semiderivations of Prime Rings,
Proceedings of the American Mathematical Society, 1990, vol. 108, no. 4, pp. 859-860.
DOI: 10.1090/S0002-9939-1990-1007488-X.
4. Posner, E. C. Derivations in Prime Rings, Proceedings of the American Mathematical Society, 1957, vol. 8, no. 6, pp. 1093-1100. DOI: 10.1090/S0002-9939-1957-0095863-0.
5. Lanski, C. Differential Identities, Lie Ideals and Posner's Theorems,
Pacific Journal of Mathematics, 1988, vol. 134, no. 2, pp. 275-297. DOI: 10.2140/pjm.1988.134.275.
6. Daif, M. N. and Bell, H. E. Remarks on Derivations on Semiprime Rings, International Journal of Mathematics and Mathematical Sciences, 1992, vol. 15, Article ID 863506, 2 p. DOI: 10.1155/S0161171292000255.
7. Ashraf, M. and Rehman, N. On Commutativity of Rings with Derivations, Results in Mathematics, 2002, vol. 42, no. 1-2, pp. 3-8. DOI: 10.1007/BF03323547.
8. Herstein, I. N. A Remark on Rings and Algebras, Michigan Mathematical Journal, 1963, vol. 10, no. 3, pp. 269-272. DOI: 10.1307/mmj/1028998910.
9. Bell, H. E. On the Commutativity of Prime Rings with Derivation, Quaestiones Mathematicae, 1999, vol. 22, pp. 329-335. DOI: 10.1080/16073606.1999.9632085.
10. Ali, S., Khan, M. S., Khan, A. N. and Muthana, N. M.
On Rings and Algebras with Derivations, Journal of Algebra and its Applications, 2016, vol. 15, no. 6, 1650107, 10 p. DOI: 10.1142/S0219498816500225.
11. Ali, S., Ashraf, M., Raza, M. A. and Khan, A. N. \(n\)-Commuting Mappings on (Semi)-Prime Rings with Application, Communications in Algebra, 2019, vol. 47, no. 5, pp. 2262-2270. DOI: 10.1080/00927872.2018.1536203.
12. Raza, M. A. and Rehman, N. An Identity on Automorphisms of Lie Ideals in Prime Rings,
Annali dell'Universita' di Ferrara, 2016, vol. 62, no. 1, pp. 143-150. DOI: 10.1007/s11565-016-0240-4.
13. Raza, M. A. and Rehman, N. On Prime and Semiprime Rings with Generalized Derivations and Non-Commutative Banach Algebras, Proceedings-Mathematical Sciences, 2016, vol. 126, no. 3, pp. 389-398.
14. Rehman, N. and Raza, M. A. On \(m\)-Commuting Mappings with Skew Derivations in Prime Rings, St. Petersburg Mathematical Journal, 2016, vol. 27, no. 4, pp. 641-650. DOI: 10.1090/spmj/1411.
15. Huang, S. Semiderivations with Power Values on Lie Ideals in Prime Rings, Ukrainian Mathematical Journal, 2013, vol. 65, no. 6, pp. 967-971. DOI: 10.1007/s11253-013-0834-2.
16. Chuang, C. L. GPIs Having Quotients in Utumi Quotient Rings, Proceedings of the American Mathematical Society, 1988, vol. 103, no. 3, pp. 723-728. DOI: 10.1090/S0002-9939-1988-0947646-4.
17. Chuang, C. L. Differential Identities with Automorphism and Anti-Automorphism-I, Journal of Algebra, 1992, vol. 149, pp. 371-404. DOI: 10.1016/0021-8693(92)90023-F.
18. Bergen, J., Herstein, I. N. and Kerr, J. W. Lie Ideals and Derivations of Prime Rings, Journal of Algebra, 1981, vol. 71, pp. 259-267. DOI: 10.1016/0021-8693(81)90120-4.
19. Lanski, C. and Montgomery, S. Lie Structure of Prime Rings of Characteristic 2, Pacific Journal of Mathematics, 1972, vol. 42, no. 1, pp. 117-136. DOI: 10.2140/pjm.1972.42.117.
20. Jacobson, N. Structure of Rings, Amer. Math. Soc. Colloq. Pub., vol. 37, Amer. Math. Soc., Providence, RI, 1964.
21. Chuang, C. L., Chou, M. C. and Liu, C. K. Skew Derivations with Annihilating Engel Conditions, Publicationes Mathematicae Debrecen, 2006, vol. 68, no. 1-2, pp. 161-170.
22. Martindale 3rd, W. S. Prime Rings Satisfying a Generalized Polynomial Identity, Journal of Algebra, 1969, vol. 12, no. 4, pp. 576-584. DOI: 10.1016/0021-8693(69)90029-5.
23. Chuang, C. L. Differential Identities with Automorphisms and Antiautomorphisms, II, Journal of Algebra, 1993, vol. 160, no. 1, pp. 291-335. DOI: 10.1006/jabr.1993.1181.
24. Lee, T. K. Semiprime Rings with Differential Identities, Bulletin of the Institute of Mathematics
Academia Sinica, 1992, vol. 20, no. 1, pp. 27-38.
25. Chuang, C. L. The Additive Subgroup Generated by a Polynomial, Israel Journal of Mathematics, 1987, vol. 59, no. 1, pp. 98-106. DOI: 10.1007/BF02779669.
26. Krupnik, N., Roch, S. and Silbermann, B. On \(C^*\)-Algebras Generated by Idempotents, Journal of Functional Analysis, 1996, vol. 137, no. 2, pp. 303-319. DOI: 10.1006/jfan.1996.0048.
27. Muller, V. Nil, Nilpotent and PI-Algebras, Functional Analysis and Operator Theory, Banach Center Publications, 1994, vol. 30, pp. 259-265. DOI: 10.4064/-30-1-259-265.
28. Murphy, G. J. \(C^*\)-Algebras and Operator Theory, New York, Academic Press Inc., 1990.