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Abstract. We study a class of impulsive Burgers equations. A new topological approach is applied to
prove the existence of at least one and at least two nonnegative classical solutions. The arguments are
based on recent theoretical results. Here we focus our attention on a class of Burgers equations and we
investigate it for the existence of classical solutions. The Burgers equation can be used for modeling both
traveling and standing nonlinear plane waves. The simplest model equation can describe the second-order
nonlinear effects connected with the propagation of high-amplitude (finite-amplitude waves) plane waves
and, in addition, the dissipative effects in real fluids. There are several approximate solutions to the
Burgers equation. These solutions are always fixed to areas before and after the shock formation. For
an area where the shock wave is forming no approximate solution has yet been found. Therefore, it is
therefore necessary to solve the Burgers equation numerically in this area.
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1. Introduction

The Burgers equation is a fundamental partial differential equation in fluid mechanics. It is

also a very important model encountered in several areas of applied mathematics such as heat
conduction, acoustic waves, gas dynamics and traffic flow. Analytical solutions of the partial
differential equations modeling physical phenomena exist only in few of the cases. Therefore
the need for the construction of efficient numerical methods for the approximate solution of
these models always exists. Many of the analytical solutions to the Burgers equation involve
Fourier series. There are several approximate solutions of the Burgers equation (see [1]). These
solutions are always fixed to areas before and after the shock formation. For an area where the
shock wave is forming no approximate solution has yet been found. It is therefore necessary to
solve the Burgers equation numerically in this area (see [2, 3]). Numerical solutions themselves
have difficulties with stability and accuracy.
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Here, in this paper, we focus our attention on a class of Burgers equations and we will
investigate it for existence of classical solutions. More precisely, consider the problem

u +uu, =0, tE€Jy, x €R,
u(0,z) = up(x), z€R, (1.1)
U(tk+,£6) :u(tk,CC) +Ik(u(tk,£6)), x GR’ ke {1""am}’

where
(H1) T>0,0=t) <t; <...<tm<tmp1 =T, J=[0,T], Jo = J\{tx}7,, m € N.
(H2) I, € €(]0,T] x R), [Ix(u)| < Alul™, u e R, rp >0, k € {1,...,m}, A is a positive
constant.
(H3) ug € €' (R), |up| < B on R, B is a positive constant.

Additional conditions for the constants A and B will be given below. Here

u(ty, ) = tEgj— u(t,z), u(tp+,z) = tEglJru(t,x),:c eR.

Whereas impulsive differential equations are well studied, the literature concerning
impulsive partial differential equations does not see to be very rich. To the best of our
knowledge, there are no any references devoted on investigations of the impulsive Burgers
equation for existence and uniqueness of classical solutions.

The paper is organized as follows. In the next section, we give some preliminary results.
In Section 3, we prove existence of at least one solution for the problem (1.1). In Section 4,
we prove existence of at least two nonnegative solutions of the problem (1.1). In Section 5,
we give an example that illustrates our main results.

2. Preliminary Results

Below, assume that X is a real Banach space. Now, we will recall the definitions of compact
and completely continuous mappings in Banach spaces.

DEFINITION 2.1. Let K : M C X — X be a map. We say that K is compact if K(M) is

contained in a compact subset of X. The map K is called a completely continuous map if it
is continuous and it maps any bounded set into a relatively compact set.

Proposition 2.1 (Leray—Schauder Nonlinear Alternative [4]). Let C' be a convex, closed
subset of a Banach space E, 0 € U C C, where U is an open set. Let f : U — C be
a continuous, compact map. Then

(a) either f has a fixed point in U;

(b) or there exist x € OU, and X € (0,1), such that x = \f(x).

To prove our existence result we will use the following fixed point theorem which is a
consequence of Proposition 2.1.

Theorem 2.1. Let E be a Banach space, Y a closed, convex subset of E, U be any open
subset of Y with 0 € U. Consider two operators T and S, where

Tr=¢ zeU,

fore >0 and S : U — E be such that
(i) I —S: U — Y continuous, compact and
(i) {zeU:z=AI—-S)z,2€dU} =2, forany A€ (0,1).
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Then there exists x* € U such that
Tx* 4+ Sz* =z,

<1 We have that the operator %(I —8):U — Y is continuous and compact. Suppose that
there exist g € OU and g € (0,1), such that

1
o = Mo E(I — S).%'o,

that is
Trog = )\0 (I — S)xo,

where A\g = pg % € (0, %) . This contradicts the condition (ii). From Leray—Schauder nonlinear

alternative, it follows that there exists 2* € U, so that

1
*: _I_ *
7= (- ),

or
ex* + Sx* = x",

or
Tx* +Sz* =2*. >

DEFINITION 2.2. Let X and Y be real Banach spaces. A map K : X — Y is called
expansive if there exists a constant h > 1 for which one has the following inequality

1Kz — Kyly = hllz —yllx,

for any z,y € X.
Now, we will recall the definition for a cone in a Banach space.

DEFINITION 2.3. A closed, convex set & in X is said to be cone if

1) ax € & for any a > 0 and for any = € 2,

2) z,—x € & implies = = 0.

Denote Z* = #2\{0}. The next result is a fixed point theorem which we will use to prove
existence of at least two nonnegative global classical solutions of the IVP (1.1). For its proof,
we refer the reader to [5] and [6].

Theorem 2.2. Let &2 be a cone of a Banach space E; €} a subset of 2 and Uy, Us and Us
three open bounded subsets of &, such that Uy C Uy C Us and 0 € U,. Assume that
T :Q — & is an expansive mapping, S : Us — FE is a completely continuous map and
S(U3) C (I —T)(R). Suppose that (Us \ U1)NQ # @, (U3 \ Uz) NQ # @, and there exists
ug € &£* such that the following conditions hold:

(i) Sx # (I = T)(x — Aug), for any X > 0 and = € 9U; N (Q + Aug),

(ii) there exists € > 0, such that Sz # (I —T)(A\x), for any A > 14¢€, © € OUy and Az € €,

(iii) Sx # (I = T)(x — Aug), for any A >0 and x € OU3 N (2 + Aup).

Then T + S has at least two non-zero fixed points x1,xo € &2, such that
z1 €0UsNQ and x5 € (ﬁg \UQ) NnQ,

or

xr] € (UQ\Ul)ﬂQ and x9 € (ﬁg\ﬁg)ﬂﬁ.
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Define the spaces PC(J), PC(J) and PC*(J, ¢ (R)) by
PC(I) ={g: g €€(h), (Bgt)), 9(t;)) and g(t;) = g(t;), j € {1,....k}},

PCY(J) = {g 1 g€ PC(I)NE (Do), Bd(t)), ¢'(t))) and ¢'(t;) = ¢'(t;), j € {1,... ,k}}

and

PCY(J, ¢ (R))
= {u: JxR =R u(-,z) € PCY(J), x € Rand u(t,-) € €' (R), t € J}. (2.1)

Suppose that X = PC'(J,¢(R)) is endowed with the norm

uuuzsup{ sip o), swp Jus(ta)l,
(t,x)e[t]’,tj+1]><R (t,x)e[tj,th]XR

sup Juglt ), je{l,...,k}},

(t,@)€lt) tj+1] xR

provided it exists. Note that X is a Banach space. For u € X, define the operator

Sju(t,z) = u(t,r) — up(x) — Z I (u(ty, z)) + /u(s,x) ug(s,x)ds, (t,x)e JxR.
0<tj <t 4

Lemma 2.1. Suppose that (H1)-(H3) hold. If uw € X satisfies the equation
Siu(t,z) =0, (t,z) e J xR, (2.2)

then it is a solution of the problem (1.1).

< Let u € X be a solution of the equation (2.2). We differentiate the equation (2.2) with

respect to ¢ and we find
ur(t, @) + u(t, x)u, (t,x) =0,

(t,z) € J x R, and u(0,2) = up(z), € R. Next, we put t = t;+ and t =t;, j € {1,...,m},
in the equation (2.2) and we obtain

tj
0= u(tj+,z) —up(x) — Z I (u(ty, z)) + /u(s,x) ugy(s,x)ds, je{l,...,m}, z€R,
0<tp<t;j+ 0
and
t
0 =u(tj,z) —up(z) — Z I (u(ty, z)) + /u(s,x) ugy(s,x)ds, je{l,...,m}, z€R,
0<ty <t; 0

respectively. Therefore
u(tj_hx) = u(tj’x) + Ij(u(tj’x))’ JE {1a v ,m}, z € R.

Consequently u satisfies (1.1). This completes the proof. >
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Lemma 2.2. Suppose that (H1)-(H3) hold. If u € X, ||u|| < B, then

m
|Swu(t, )] <2B+AY B +TB?, (t,x)€J xR
k=1

<1 We have

O<trp<t

|S1u(t, )| = |u(t,z) — up(z) — Z I (u(ty, z)) —{—/u(s,x)ux(s,x) ds
0

< fult,2)| + luo(@)] + ) |Ik(u(tka$))|+/|u(5,$)um(5a$)|d5
0

O<tp<t

< Jult, o)] + |ug(x)| + A Z u(ty, z)[™ + /\u (s, 2)uz(s, x)| ds

0<trp<t
< QB+AZB”€ +TB? (t,x)€JxR.
k=1

This completes the proof. >
(H4) Suppose that g € €(J x R) is a nonnegative function, such that

t
216 (1—i—t+t2—i—t3) (L4 || + |z + |2 + |2|* + |z]° + |2|°) / g(t1,x1)dzy | dty <
0

o\m

(t,z) € J x R, for some constant D > 0. In the last section, we will give an example for a
function g and a constant D that satisfy (H4).

For u € X, define the operator
t x
Sou(t, x) // (t —t1)*(x — z1)3g(t1, 1) S1u(ty, x1) doy dty,  (t,z) € J x R.
0
Lemma 2.3. Suppose that (H1)-(H4) hold. For u € X, |lu|]| < B, we have

m
|Soul| < D (23 +AY B+ TB2> , (t,x) € JxR.
k=1

<1 We have

T

t
‘Sgu t 1‘ // t—tl 1‘—1‘1) g(tl,xl)Slu(tl,xl)dxl dtl
0 0

k=1

t x m
< / / t— )2 — o Pyt @) Srults, 21)| day | dby < <2B+AZB”+TB2>
0

t T
X / / t — tl |,I — $1|3g(7f1,$1)(1 + tl)(l + |$1|2 + |$1|3) dx1|dty
0
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k=1

m t T
< <2B+AZB”€ +TB2> (1 +t)|3:|3(1+|:c|2+|3:|3)/ /g t1,71) dry | dty
0

m
<D <QB+AZB”€ +TBQ> , (t,x) € J xR,

and

xT

t
‘—Sgu t x == 2// t—tl CE—xl) g(tl,xl)Slu(tl,xl)dm dtl
0 0

t
<[l
0
T

t

m

<2<2B+A2Brk+TB2>//t—t1 1‘—1‘1’ g(tl,xl)(l—i-tl)(l-i-’1‘1‘24-’1'1‘ )d.%'l dty
k=1 0 o

t — tl ’1‘ — .%'1’ g(tl,xl)\Slu(tl,xl)\ d.%'l dtl

O\&z

xT

m t
<72 <2B +AY B+ TBQ> t(+ )|z (1 + |2 + |=]?) / /g(tl,xl) dry| dty
0

k=1 0
m
<D <QB+AZBW —|—TBQ> . (t,z) e J xR,
k=1

and

T

t
0
'%Sgu(t,x) = 3//(t — t1)2(.%' — xl)Zg(tl,xl)Slu(tl,xl)dml dtl
0 0

T

t
< 3/ /(t — t1)2(1‘ — xl)Qg(tl,xl)]Slu(tl,xl)\ d.%'l dtl
0

t| =
<9 <2B+A2Brk+TB )/ / t — tl 1‘ — x1)2g(t1,m1)(1 + tl)(l + ’1‘1’24- ‘.%'1‘3) dxq| dtq
k=1 0 o
m t T
< 108 <2B +A) B+ TBQ> 21+ )|z (1 + |z)* + |z) / /g(tl,xl)dxl dty

k=1 o |o

m
<D <QB+AZB” +TBQ> . (t,x) e J xR,
k=1

Consequently

m

[Saull < D <2B +AY B+ TBQ> .

k=1

This completes the proof. >
Lemma 2.4. Suppose that (H1)—(H4) hold. If u € X satisfies the equation

Sou(t,x) =C, (t,x) € J xR, (2.3)
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for some constant C, then u is a solution to the problem (1.1).
< We differentiate three times with respect to ¢ the equation (2.3) and we get
x
2/(:13 —x1)%g(t,x1)S1u(t, z1) dry =0, (t,x) € J xR,
0

or
T

/(x —x1)%g(t,x1)S1u(t,21) =0, (t,x) € J xR,
0
Now, we differentiate four times with respect to = the last equation and we find

6g(t,x)S1u(t,x) =0, (t,x) € J xR,
or
g(t,z)Su(t,z) =0, (t,x) € J xR,

whereupon

Swult,z) =0, (t,2) € (0,T] x (R\{0}).
Since Siu(-,-) € €(J x R), we get
0 = lim Syu(t,z) = S1u(0,z) = lim Siu(t,z), (t,x) € J xR.
t—0 z—0
Therefore
Siu(t,z) =0, (t,z)eJ xR

Hence and Lemma 2.1, we conclude that u is a solution to the problem (1.1). This completes
the proof. >

3. Existence of at Least One Solution

Now, suppose that

(H5) D <2B +AS B+ TBQ> < B.
k=1

(H6) e(B—i—D <2B+A > BTk +TBQ>> < B.

k=1
For u € X, define the operators

Tu(t,x) = —eu(t,x),

Su(t,x) = (1 + €)ult,z) + eSou(t,x), (t,x) € J xR.

By Lemma 2.4, it follows that any fixed point of the operator 7"+ S is a solution to the
problem (1.1).

Lemma 3.1. Suppose that (H1)—(H6) hold. For u € X, we have

(I =S)u|| <B and ||(1+4+¢)l—S)ul <eB.

<1 Applying Lemma 2.3, we get

m
I = S)ull = || — et — eSyull < eljull + el Soul] < e <B +D (zB LAY B —|—TB2>> <B
k=1
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and
(1 + )T — S)u|| = ||eSaul| = €||Sau|| < eD <2B +AY B+ TBQ> < eB.
k=1

This completes the proof. >
Our main result in this section is as follows.

Theorem 3.1. Suppose that (H1)-(H6) hold. Then the problem (1.1) has at least one
solution.

< Let Y denote the set of all equi-continuous families in X with respect to the norm || - .
Let also, Y = Y be the closure of 57,

U={ueY: |u| <B}.
For v € U and € > 0, define the operators
T(u)(t,z) = eu(t,z),
S(u)(t,z) = u(t,z) — eu(t,x) — eSa2(u)(t,x), (t,z)e JxR.
For u € U, we have
11 = S)ull = llew + eSyull < ellul + el|Szull < By + eABy.

Thus, S : U — X is continuous and (I —S)(U) resides in a compact subset of Y. Now, suppose
that there is a u € 9U, so that
u=AI—S)u,

or
u = Xe (u+ Sau), (3.1)

for some X € (0, %) Then, using that Sou(0,z) = 0, we get
u(0,z) = Xe(u(0,z) + Sau(0,z)) = Aeu(0,z), x€R,
whereupon Ae = 1, which is a contradiction. Consequently
{fueU:u=MI-Su, uecdU} =0

for any A € (07 %) Then, from Theorem 2.1, it follows that the operator T'+ .S has a fixed
point u* € Y. Therefore

u*(t,z) = Tu(t, x) + Su™(t,x) = eu™(t, z) +u* (t,z) — eu” (t, x) —eSou™(t,x), (t,z) € JxR,

whereupon
Sou*(t,z) =0, (t,x) e JxR.

From here, u* is a solution to the problem (1.1). From here and from Lemma 2.4, it follows
that u is a solution to the IVP (1.1). This completes the proof. >

4. Existence of at Least Two Nonnegative Solutions

Suppose:

(H7) Let m > 0 be large enough and A, B, ?, L, Ry be positive constants that satisfy
the following conditions

~ 2
r<L<Ry, €>0, R1><—+1>L,
om
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m
L
D (231 +AY R +TR§> < .
5
k=1
For x € X, define the operators

L
Tyu(t,z) = (1 + me)u(t,z) — €10’

Ssu(t,x) = —eSou(t, ) — meu(t,z) — e£,

10 (t,x) € J xR.

Our main result in this section is as follows.
Theorem 4.1. Suppose that (H1)-(H4) and (H7) hold. Then the problem (1.1) has at
least two nonnegative solutions.
<1 Define _
U, = @%: {U S HUH < F},
Uy=Z,={ve Z: |v| <L},
U3 = '@Rl = {U € P HUH < Rl},

D . ) L
Ry=Ri+— <2R1+A;R1’“+TR1> + e

N=Ppg, ={ve Z: |v| <R}

1) For v1, vy € €2, we have
HTlvl — Tﬂ)QH = (1 + m&‘)Hvl — UQH,

whereupon 717 : () — E is an expansive operator with a constant 1 + me.
2) For v € &g, we get

L “ L
I1S50]] < &l Sav]| +meflo]| + 5 < e (D (231 + AI;R?“ + TR%> +mRy + 1—0> .

Therefore S3(ZR,) is uniformly bounded. Since S : PR, — E is continuous, we have that
S3(ZR,) is equi-continuous. Consequently S3 : Zr, — E is a 0-set contraction.

3) Let v € PR, Set

1 L
v = vy + —Sav1 + —.
m om

Notethathvl—i—%200nJ><R.Wehavev2>OonJ><]Rand

foall < ol + sl + 2 < R+ 2 (om 4 A mp +TR) + 2 2 R
V2| &% ||V1 m 2V1 5m\ 1 m 1 o 1 1 5m_ 2.

Therefore vy € 2 and
L
—emug = —emuy — eSoU1 — 61—0 — eE,
or

L
(I —Ty)vy = —emuy + EE = Ssv1.

Consequently S3(Zg,) C (I — T1)(Q).
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4) Assume that for any ug € 27* there exist A > 0 and u € 922, N (Q + Aug) or
u € 0ZR, N (2 + Aup), such that

Sgu = (I — Tl)(u — )\UQ).

Then
- Su—meu—e£ = —me(u — Aug) + €—
2 10 STk
or I
—Sou = Amug + 5
Hence,

L L
Soull = [|A — —.
- 1]
This is a contradiction.
5) Suppose that for any €; > 0 small enough there exist a uy € 0Py, and A\ = 1+ €,
such that \ju; € #g, and

53u1 == (I - Tl)()\lul). (41)

In particular, for €; > 5%, we have u; € 0L, Muy € PR, A1 = 1+ ¢ and (4.1) holds.
Since u; € 02y, and \u; € Pg,, it follows that

2
<5— +1> L < ML= )\1Hu1H <R

m
Moreover,
—eSou1 — meuy — 61—0 = —A\imeuy + EE,
or
L
Souq + g = ()\1 - l)mul.
From here,
L L
23 > (| Souq + g = ()\1 — 1)mHu1H = ()\1 — 1)mL
and
2
- + 1 2 )‘17
om

which is a contradiction.
Therefore all conditions of Theorem 2.2 hold. Hence, the problem (1.1) has at least two
solutions u; and ug so that
Jurll = L < [luz|| < Ry,

or
r < |lu| <L < |lug|l < Ry.

This completes the proof. >

5. An Example
LetT:Ln:l’m:?,t—l —

).

. Consider the problem

3<1 é) (335 (3] wen

.-lklr—l

u +uu, =0, te [
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1

= — R
u(0, ) T TER
u(tk_{"x) = u(tk’x) + (u(tk,$))4, T < Ra ke {1’253}
Here
A=1, B=1, C=1, r=1
Then
m
2B+AZBTk+TB2:2+3+1:6.
k=1
Take 1 3 1
o ~_ _ ~ _ 1050
D_E_W, T_E’ Rl—l, T—g, L——, m 10
Then
- 6
2| _ _
D(QB+AZBT‘€+TB>_W<1_B
k=1
and

k=1

m
1 6
2
e(B—kD(QB—i—AE B +TB )) = 1050 <1+1050> <1l=10B.

Thus, (H5) and (H6) hold. Hence and Theorem 3.1, it follows that the considered problem

has at least one solution. Moreover,

~ 2 1 2
L =1 —4+1)=-=(—+1) L
r<L<r, R > <5‘1050+ )2 <5m+ > s

and

<N > 6 1 L
k=1

Consequently (H7) holds. By Theorem 4.1, it follows that the considered problem has at least

two nonnegative solutions.
Now, we will construct a function ¢ for arbitrary n. Let

1+ s11y/2 + 522 s1/2

h(s) = log g I(s) = arctan 1o seR.
Then
H(s) = 22v/2510(1 — s22) () = 11v2s10(1 + 320)7 CeR
(1 — s11v/2 + s22)(1 + s11/2 + 522) 1+ 50
Therefore

—00 < lim (14 |s|+ -+ s%)A(s) < o0,
s—+oo

—00 < lim (14 |s|+---+5%)i(s) < o0.
s—+oo

Hence, there exists a positive constant C] so that

1 1+ 112 + 522 1 sl 2)
S Cla

T+ |s|+s%4+--- 455 lo + —s
(11l )<44\/§ BT 2+ s2 | 222 1— s
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s € R. Note that by |7, p. 707, Integral 79|, we have

Let

/ dz 11 1+z\/§+22+ 1 ) 22
= 0 arctan ——.
T+e 02 P1-22+22 22 122
810
Q(s) = s € R.

(14 s2)4(1 + s*)(1 + s + s2)2’

Then there exists a positive constant Cy so that

T

t
216(1 +t +t* +¢°) (1+\xy+---+x6)/Q(s)ds /Q(y)dy <Oy, (t,z)eJxR.
0 0

Take g(t,x) = C%Q(t)@(w), (t,x) € J x R. Hence,

xT

t
216(1+t+t2+t3)(1+|a;|+---+:c6)/ /g(s,y)dy ds< D, (tz)eJxR.
0 0
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CYIIECTBOBAHUE PEHIEHNN JJ1s1 OJHOT'O KJIACCA
NMITYJIbCHBIX YPABHEHWIT BIOPTEPCA

Teoprues C. I'12, Xakem A3
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Awnnoranusi. Mbr n3y4daem KJ1acC UMITyJIbCHBIX ypaBHeHUit Broprepca. [l moka3aresbcTBa CyniecTBOBa-
HUS XOTs OBl OJJHOIO M XOTs OBl JBYX HEOTPHIIATEJIbHBIX KJIACCHIECKUX DEIIeHUIl IPUMEHSAETCs HOBBIi TOIIO-
sorudeckuit nogxon. O6ocHOBaHMS ONMPAIOTCS HA HeJaBHUE Teopernydeckue pe3ysinbrarsl. OCHOBHOE BHUMAaHUE
yaAeJsieTcs KJIacCy ypaBHeHnit Broprepca i Bopocy CyIecTBOBaHUS KJIACCUYIECKUX pelteHuil. Y pasuenue Biop-
repca MOXKHO HCIIOJIb30BAaTh JJIsi MOJIEJIMPOBAHMs KaK OEryInnx, TaK ¥ CTOSYUX HEJIMHEHHBIX IJIOCKAX BOJIH.
IIpocreiiee MojieIbHOE ypaBHEHME CIIOCOOHO OIHCATH HeJMHENHHbIE 3 dEKTHI BTOPOro IOPsiIKa, CBI3aHHbIE
C PaCIPOCTPAHEHUEM ILJIOCKUX BOJIH OOJIBINION aMIJIATY/ bl (BOJIH KOHEYHOHW AMIUIMTY/IbI), & TAKXKE JHMCCH-
naruBHbIE 3G@dEKTH B peaNbHbIX KUAKOCTAX. CyIecTByeT HeCKOIBKO NPUOJINKEHHBIX PEIeHnil ypaBHEHUS
Broprepca. 9tu perienns Bcerga GUKCUPYIOTCs 10 U IIOCae oOpa3oBaHust yiapHoil BosHbl. s obaactu dop-
MUPOBAHUSA YIAPHOU BOJHBI TPUOINKEHHOE PellleHne moka He HaigeHo. [losromy B 910l 0b1acTu HEOOXOAMMO
YHCJIEHHOE pellleHre ypaBHeHus1 Bioprepca.

KimroueBsle ciioBa: ypasaenne Broprepca, nMiysbcaoe ypaBaenune broprepca, 1moJioXKuTe/IbHOE PelleHue,
HEIO/[BUXKHAs TOYKA, KOHYC, CYMMa OIIepaTOPOB.
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