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Abstract. For an automorphisms with non-zero Kolmogorov-Sinai entropy, a new class of La-functions
called the Gordin space is considered. This space is the linear span of Gordin classes constructed by some
automorphism-invariant filtration of o-algebras §,. A function from the Gordin class is an orthogonal
projection with respect to the operator I — E(:|§») of some §mn-measurable function. After Gordin’s work
on the use of the martingale method to prove the central limit theorem, this construction was developed
in the works of Volny. In this review article we consider this construction in ergodic theory. It is shown
that the rate of convergence of ergodic averages in the Lz norm for functions from the Gordin space is
simply calculated and is ﬁ(ﬁ) It is also shown that the Gordin space is a dense set of the first Baire

category in L2(Q,F, p) © L2(Q,1I(T, F), 1), where II(T, F) is the Pinsker o-algebra.
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1. Introduction

In the famous work of Gordin [1] the martingale approximation method was first used
to prove the central limit theorem for stationary sequences. Subsequently, this approach was
developed both for the central limit theorem (see, for example, [2-4]), and in other problems
(see, for example, [5] on the convergence of series and [6-8] on large deviations); see also
review [9]. The key idea is to consider the filtration of o-algebras associated with a measure-
preserving transformation. We will use this construction in the theory of convergence rates
in ergodic theorems.

Let (92, F, 1) be a standard probability space, and let T : Q — Q be a measurable invertible
measure-preserving transformation (automorphism). Let §y be a o-subalgebra of o-algebra F,
such that T~'Fo C §o. Thus, a filtration of o-algebras F, := T"Fo, n € Z arises, i. e.,

Sn C SnJrl, n € Z.

#The work was carried out in the framework of the State Task to the Sobolev Institute of Mathematics,
project FWNF-2022-0004.
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Let us denote by E,, the conditional expectation operator with respect to the o-algebra §,,
acting in Lo(Q,F, 1), i. e., B, f = E(f|§n). The operator E,, orthogonally projects La(€,§, 1)
onto La(€2, Fn, pt). We will also use the symbol T to denote the Koopman operator acting in
Lo(Q,§, i) according to the rule Tf = f o T'. Let us also denote ergodic averages as AL f, i. e.,

n—1
1
Agf: E E foTk’ fELQ(Q,S,,U)-
k=0

Von Neumann’s ergodic theorem states that AL f norm-converges to E(f|J) for n — oo,
where J is the o-algebra of T-invariant sets, i. e., such A € § that 7714 = A.

It is well known that functions f from the class of coboundaries (or cohomologous to
zero), 1. e., f € (I —T)La(Q2,F, 1), are characterized by the rate of convergence %
Neumann’s ergodic theorem. Namely for such and only such functions the asymptotic relation
HAz;fHQ = ﬁ(%) for n — oo holds [10]. It is worth noting that for non-unitary operators T'

the asymptotics HA;C f H2 = o(ﬁ) as n — oo with some additional condition will also imply

in von

zero cohomology [11].

The class of coboundaries is believed to be the only simple construction for the abstract
transformation 7', where an estimate of the rate of convergence in von Neumann’s ergodic
theorem is easily obtained. There are also more complex classes of functions for which it is
possible to obtain estimates of the rates of convergence of ergodic averagess, for example, the
class of fractional coboundaries [12].

Our goal in this somewhat survey article is to consider in some sense new class of functions
for which it is quite simple to obtain an estimate of the rate of convergence in von Neumann’s
ergodic theorem. We also prove that when the transformation is a K-automorphism, this class
is dense in the space of of Ly functions with zero integral.

We say that a function f belongs to the Gordin class &(T,Fo) generated by the o-algeb-
ra §o, if

f € (I - En)L2(Qa%’ma ,U')’ L. €., f € LQ(Qa Sma M) © L2(Qa Sn, :U')

for some m,n € Z, m > n. Thus,
&(T,F0) = | Hum: Hom = (I = En)La(Q, T, ).
m>n

The Gordin space &(T") is the linear span of all the Gordin classes &(T', §o), 1. e.,
&(T) = span{&(T', Fo)}-

Let us mention several results where functions from the Gordin space are found.

REMARK 1. The proof of Kolmogorov’s theorem that K-automorphisms have infinite Le-
besgue spectral type (see, for example, [13, Theorem 5.13]) involves functions from the Gordin
class of the form x4 — E(xal§-1), A € Fo.

REMARK 2. It is shown in [14, Theorem 6.1] that functions of the form g = x4 —E(xa|F-n),
A € Fm, m,n > 0, are Wiener—Wintner functions of power type 1/4 in Ly(€2, §, 1t). This means

that
1 N-1 1
k 2mike
— E goT”.e =0 <—> .
N — YN

2
Now let us present the main result.

sup
€
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Theorem 1. For any function f from the Gordin space &(T') the following estimate is

true:
HA fHZ—ﬁ<\/N> as N — oo.

2. The Proof of Theorem 1

Let us use the following properties of the conditional expectation. Let 2 be a o-algebra,
then

E(E(f2) =Ef, (1)
E(f-gl2) =g -E(f|A), g — A-measurable, (2)
E(foT|) =E(f|TA) o T, (3)

where Ef = [ fdpu.

<1 The set of functions f with HA f H2 = ﬁ \F) is clearly linear. To prove Theorem 1, it
is enough to consider the function f from some Gordin class &(T,F¢). Then there are n,m € Z
with m > n and g € La(Q, §m, 1), such that f = g — E,g.

To estimate the norm of ergodic averages, we use the following well-known formula (see,
for example, [15, §1]):

N—
G2 = L 3 (v ) oty = B4 2 S vy re(s o )

Lo

Lo’
|k|<N k=1

When calculating scalar products, we will use the properties (1), (2) and (3). Taking in account
that g o T* will be §,,_i-measurable, and F_r C §n for k > m — n, for such k we obtain

(foTk,f)L2 = (goTk—EngoTk,g—Eng)L2
= E(g oTk -g) — E(g oTk. Eng) —i—E(Eng oTk. Eng) — E(Eng oT*. g)
=E(goT"-g) —E(E,(90T" 9)) +E(Es—i (90 T") - Eng) —E(Ep—k(goT") - g)
=E(go Tk . ) — E(g oTk. g) + E(En(En—k(go Tky. 9)) —E(En.—k(go Tk) - q)
=0+ E(E,—k(90T") - 9) —E(En_k(goT") - g) = 0.

Thus, foral N >m —n >0

2 m—n—1 o
ag s = L 2 Sy re(roh gy, < LI L 2B TSN
k=1 Pt

I3 20713 m-—n 20 £II12(m — n)

= AR S - (1- 57 < ),

The proof of Theorem 1 is complete. >
Let us present several corollaries.

Corollary 1. For any function f from the Gordin class, the spectral measure oy satisfies
the estimate o((—6,9]) = 0(J) as § — 0.

< This follows from the well-known Kachurovskii criterion (see, for example, [15, Theo-
rem 3|), as well as from the fact that the spectral measure ¢ has a continuously differentiable
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density (see, [15, Theorem 7]), since most of the correlation coefficients (f o T*, f)z,, k € 7Z,
vanish. >

Corollary 2. For uniform convergence on the space H, ,, there is the estimate

2(m —n)
HA%HHn,m—)LﬂQ,&M)g N

for all N > m — n.
In connection with Corollary 2, we note a recent paper [16], in which subspaces with power-
law uniform convergence in von Neumann’s discrete-time ergodic theorem were studied.

Corollary 3. For any function f from Gordin space the following asymptotic relation

holds a. e.: 5
InN(lnln N
VN

for any 8 > 1/2.

< This follows from Theorem 4.5 in [17]. >

Corollary 4. If f is in the Gordin space &(T'), then f € (I —T)*L2(Q,§, 1) for every
0 < a<1/2. For a = 1/2 a similar statement is not true.

< The first statement follows from Theorem 1 and [12, Theorem 2.17]. For av = 1/2 we
will use the following criterion [12, Theorem 2.11 and Corollary 2.12|:

N

f

fe(d- T)l/ng(Q,%', <= sup
N>1

=1

For any nonzero f € H,, ,, with m —n = 1, using the fact that (T*f, f) = 0 for k # 0 we have

N . N N ; N
if —q (T]f7Tf)L2_ 2 L
1 DB ik DI M i U5 P O e

3. Additional Properties of Gordin Space

Let us now discuss the question for which automorphisms the Gordin class exists, i. e., it
does not degenerate into a zero function.

Proposition 1. The Gordin space &(T') = {0} if and only if T' has zero Kolmogorov—Sinai
entropy h(T).

< It is clear that Gordin classes consist only of zero function if and only if all o-algebras §p,
in the filtration coincide. This is equivalent to Fo = T~ 'Fo, i. e., the o-algebra Fo is invariant
under 7', or is a factor. Thus, we need to find a condition on the automorphism 7T, equivalent
to the statement: for any o-algebra §y C §

T7'%0 €T = To=T""Fo.

Such a condition was found in the works of Adler [18] and Sinai [19], namely: h(T") = 0. >
Proposition 1 shows that Ls coboundaries need not be included in the Gordin space.

Theorem 1, Corollary 3, and Theorem 2 below apply to K-automorphisms, which have positive

entropy [13, Theorem 18.9], in particular to Bernoulli shifts [13, Proposition 3.51]. Ergodic
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automorphisms of n-dimensional tori (n > 2) are isomorphic to Bernoulli shifts [20], so have
positive entropy, but irrational rotations of the circle have zero entropy [21, p. 252].

In addition, recall that the condition h(7) =0 can also be expressed by the following
equality of o-algebras (see, for example, [13, p. 320]):

INT,3) =3,

where II(T, §) is the Pinsker o algebra, i. e., II(T,§) = {A € §: h({4,Q2\ A} = 0)}. Thus, for

automorphisms with positive entropy, the Pinsker o-algebra II(T, §) is a proper o-subalgebra

of the o-algebra §. If II(T, §) = {2, Q}, then the automorphism 7T is called a K-automorphism.
For §o satisfying T30 C Fo, let’s put

Foo=[18 Tioo=\ Sn-

n<0 n=0

Proposition 2. Let h(T') > 0. The Gordin class &(T,Jo) is a linear space invariant
under the Koopman operator; and it is also dense subset of the first Baire category in
LQ(Q, %’Jroo’ :U') © L2(Q’ A lu’)

<1 For the Gordin class to be linear, it is sufficient to check that the sum of two functions

from the Gordin class is a function from the Gordin class generated by the same o-algebra.
Let f € Hy, and g € Hy, g, i. €.,

fZQO_En(F% gzw—qub

for some functions ¢ € La(Q, Fpm, 1) and ¢ € La(2,§p, ). Then, assuming for definiteness
that ¢ < n, we obtain

f+g:¢+¢_En<P_Eq¢:§_Eq§7
where £ = ¢ + ¢ — E, . It is clear that

E& = Eq(SD + ¢ — Epp) = Eqp+ Eqp — EqEnp = Egi).

Thus, it showed that
Hm,n + Hp,q C Hmax{m,p},min{n,q}'

For the Gordin class to be invariant with respect to the Koopman operator, it is sufficient
to show that TH,, », = Hy—1,m—1. Let g € La(2, §m, ), then go T' € La(Q, Fpp—1, 1) and

(9—Eng)oT =goT —E(g|§n) 0T =goT —E(goT|T'§n) =90 T — E,_1(goT).

Let now f € Lo(2,F 100, ) © La(Q, F -0, ). By definition (E,,f)m>0 is a martingale
and (E,f)n<o is a reverse martingale. Then the two-parameter family of functions
fmn = Enf —E,Enf =FEy,f— E,f will approximate the function f as m — 400 and
n — —oo. This follows from Doob’s theorem on the convergence of direct and reversed
martingales (see, for example, [13, Theorem 14.26]).

The first Baire category for the Gordin class follows from the fact that it is a countable
union of closed spaces H,, . >

Theorem 2. Let h(T) > 0. The Gordin space &(T) is invariant under the Koopman
operator; and it is also dense subset of the first Baire category in Lo(Q,§,p) ©
Lo(Q 1T, ), ).
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< Invariance follows from Proposition 2. By the Rokhlin—Sinai theorem (see, for example,
[13, Theorem 18.9]) on the characterization of K-automorphisms, there is an extremal o-sub-
algebra o C § satisfying T7'§o C o, such that

g—oo - H(T7 3)7 g-l—oo == 3

From Proposition 2 it follows that the Gordin class &(T, o) is an everywhere dense subset
of La(Q,§, 1) © La(Q,II(T, F), ). On the other hand, for any o-subalgebra §y C § satisfying
T~1%0 C Fo, from the work of Volny [22, Theorem 2] it follows that

L2(Q, §+005 M) S L2(Qa 3*005 //J) - L2(Qa Sa M) S LQ(Qa H(Ta 3)7 :u’)

Indeed, let f =g — E(g|F-o0) for g € La(Q,F+00, 1t). Then for any h € Lo(£2,F, ) we have

(f7 E(h’H(Tv g)))L2 = (E(f’H(Tv g))7 h) Ly 0

E(fI(T,3)) = E(g|I(T,3F)) — E(E(gF o) 1T, F))
= E(|I(T’F)) — E(E(9[§ -0 VII(T, ) TUT, F)) = E(IT(T’ §)) — E(9|T(T’ §)) = 0.

In terminology of Volny the closure ¢/@&(T') is the set of all difference decomposable functions
(see [22, p. 116]).
The first Baire category for &(7") follows from [23, Theorem 2| and Corollary 3. >

Corollary 5. If T' is a K-authomorphism, then the Gordin space &(T') is dense in
Lg(Q,&N) = {f € LQ(QaSaM) : /fdlu’ = 0}

It shows that for a K-automorphism on a standard probability space, the Gordin space
is not closed. Otherwise we have, by Theorem 1, a uniform rate of convergence in the mean
ergodic theorem, contradicting the well-known Krengel’s result on arbitrary slow convergence
in the mean ergodic theorem.

In conclusion, we note that it would be interesting to find a natural dense class of functions
for which the rate of convergence of ergodic averagess for an abstract automorphism with zero
entropy can be calculated.

The author thanks the referee for remarks and suggestions for improving the paper.
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Awnunorarusi. [yt aBroMopdU3MOB ¢ HEHYJIEBOI SHTPOIMEN paCCMOTPEH €CTECTBEHHBIN KJIace (PyHKIUIA,
Ha3BaHHBIN MpocTpancTBOM [opawHa. DTO MPOCTPAHCTBO €CTh JuHEHas 00oJI0YKa KjaccoB lopjauua, 1mo-
CTPOEHHBIX IO HEKOTOPOI MHBAPUAHTHOW OTHOCUTEIHBHO aBTOMOPGMU3MA DUIBTPAINHN 0-aJIredp §r. PyHKIIS
u3 kjacca lopauHa npezacrapisier coboii OPTOrOHAIBHYIO [IPOEKIUI0 OTHOCUTENbHO oneparopa I — E(f|§n)
HEKOTOPO# §y,-u3MepuMoii pyuknuu. [Tociae paborsr [opauHa 0 IpUMEeHEHUN MApPTHHTAJIBHOIO METOJA JIJIst
JI0Ka3aTeIbCTBA IEeHTPAJIBLHON MPeIe/IbHON TeOpEeMbl, 3Ta KOHCTPYKIUsS IOJy9ujIa CBoe pa3BuTue B paborax
Jamm6opa Bomabl. B 5T0it 0630pHOIT cTaThe MBI paCCMATPUBAEM 3Ty KOHCTPYKIUIO B SPrOJUYECKON TEOPUH.
ITokazaHo, 9TO CKOPOCTH CXOJMMOCTH IPrOIUYECKUX CPeAHUX B Lo HOpMe Jjisi (DyHKIMI M3 MPOCTPAHCTBA
Topauna npocro Bbraucssiercs u pasua & (ﬁ) Taxeke nmokaszano, 4To npocrpancrsa [opguHa ecTb I0THOE

MHOKECTBO I1epBoii Kareorpuu 110 Bapy B La(Q, F, 1) © L2(Q, II(T, F), i), rie II(T, §) — o-anrebpa [Tunckepa.
Karo4deBble €JI0Ba: CKOPOCTU CXOIAMMOCTH B 3PrOJAMYECKUX TeopeMax, (hUIbTpaIldsl, MapTHUHIAIbHBINA
METO/I.
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