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To Georgĭı Georgievich Magaril–Il’yaev

in occasion of his 80th birthday

Abstract. For an automorphisms with non-zero Kolmogorov-Sinai entropy, a new class of L2-functions
called the Gordin space is considered. This space is the linear span of Gordin classes constructed by some
automorphism-invariant filtration of σ-algebras Fn. A function from the Gordin class is an orthogonal
projection with respect to the operator I −E(·|Fn) of some Fm-measurable function. After Gordin’s work
on the use of the martingale method to prove the central limit theorem, this construction was developed
in the works of Volný. In this review article we consider this construction in ergodic theory. It is shown
that the rate of convergence of ergodic averages in the L2 norm for functions from the Gordin space is
simply calculated and is O( 1

√

n
). It is also shown that the Gordin space is a dense set of the first Baire

category in L2(Ω,F, µ)⊖ L2(Ω,Π(T,F), µ), where Π(T,F) is the Pinsker σ-algebra.
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1. Introduction

In the famous work of Gordin [1] the martingale approximation method was first used
to prove the central limit theorem for stationary sequences. Subsequently, this approach was
developed both for the central limit theorem (see, for example, [2–4]), and in other problems
(see, for example, [5] on the convergence of series and [6–8] on large deviations); see also
review [9]. The key idea is to consider the filtration of σ-algebras associated with a measure-
preserving transformation. We will use this construction in the theory of convergence rates
in ergodic theorems.

Let (Ω,F, µ) be a standard probability space, and let T : Ω → Ω be a measurable invertible
measure-preserving transformation (automorphism). Let F0 be a σ-subalgebra of σ-algebra F,
such that T−1F0 ⊆ F0. Thus, a filtration of σ-algebras Fn := T nF0, n ∈ Z arises, i. e.,

Fn ⊆ Fn+1, n ∈ Z.

#The work was carried out in the framework of the State Task to the Sobolev Institute of Mathematics,
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Let us denote by En the conditional expectation operator with respect to the σ-algebra Fn,
acting in L2(Ω,F, µ), i. e., Enf = E(f |Fn). The operator En orthogonally projects L2(Ω,F, µ)
onto L2(Ω,Fn, µ). We will also use the symbol T to denote the Koopman operator acting in
L2(Ω,F, µ) according to the rule Tf = f ◦ T . Let us also denote ergodic averages as AT

nf , i. e.,

AT
nf =

1

n

n−1
∑

k=0

f ◦ T k, f ∈ L2(Ω,F, µ).

Von Neumann’s ergodic theorem states that AT
nf norm-converges to E(f |J) for n→ ∞,

where J is the σ-algebra of T -invariant sets, i. e., such A ∈ F that T−1A = A.
It is well known that functions f from the class of coboundaries (or cohomologous to

zero), i. e., f ∈ (I − T )L2(Ω,F, µ), are characterized by the rate of convergence 1
n in von

Neumann’s ergodic theorem. Namely for such and only such functions the asymptotic relation
∥

∥AT
nf

∥

∥

2
= O

(

1
n

)

for n→ ∞ holds [10]. It is worth noting that for non-unitary operators T
the asymptotics

∥

∥AT
nf

∥

∥

2
= o

(

1√
n

)

as n→ ∞ with some additional condition will also imply

zero cohomology [11].
The class of coboundaries is believed to be the only simple construction for the abstract

transformation T , where an estimate of the rate of convergence in von Neumann’s ergodic
theorem is easily obtained. There are also more complex classes of functions for which it is
possible to obtain estimates of the rates of convergence of ergodic averagess, for example, the
class of fractional coboundaries [12].

Our goal in this somewhat survey article is to consider in some sense new class of functions
for which it is quite simple to obtain an estimate of the rate of convergence in von Neumann’s
ergodic theorem. We also prove that when the transformation is a K-automorphism, this class
is dense in the space of of L2 functions with zero integral.

We say that a function f belongs to the Gordin class G(T,F0) generated by the σ-algeb-
ra F0, if

f ∈ (I − En)L2(Ω,Fm, µ), i. e., f ∈ L2(Ω,Fm, µ)⊖ L2(Ω,Fn, µ)

for some m,n ∈ Z, m > n. Thus,

G(T,F0) =
⋃

m>n

Hn,m, Hn,m = (I − En)L2(Ω,Fm, µ).

The Gordin space G(T ) is the linear span of all the Gordin classes G(T,F0), i. e.,

G(T ) = span{G(T,F0)}.

Let us mention several results where functions from the Gordin space are found.

Remark 1. The proof of Kolmogorov’s theorem that K-automorphisms have infinite Le-
besgue spectral type (see, for example, [13, Theorem 5.13]) involves functions from the Gordin
class of the form χA − E(χA|F−1), A ∈ F0.

Remark 2. It is shown in [14, Theorem 6.1] that functions of the form g = χA−E(χA|F−n),
A ∈ Fm, m, n > 0, are Wiener–Wintner functions of power type 1/4 in L2(Ω,F, µ). This means
that

∥

∥

∥

∥

∥

sup
ε

∣

∣

∣

∣

∣

1

N

N−1
∑

k=0

g ◦ T k · e2πikε
∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

2

= O

(

1
4
√
N

)

.

Now let us present the main result.
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Theorem 1. For any function f from the Gordin space G(T ) the following estimate is

true:
∥

∥AT
Nf

∥

∥

2
= O

(

1√
N

)

as N → ∞.

2. The Proof of Theorem 1

Let us use the following properties of the conditional expectation. Let A be a σ-algebra,
then

E(E(f |A)) = Ef, (1)

E(f · g|A) = g · E(f |A), g — A-measurable, (2)

E(f ◦ T |A) = E(f |TA) ◦ T, (3)

where Ef =
∫

fdµ.

⊳ The set of functions f with
∥

∥AT
Nf

∥

∥

2
= O

(

1√
N

)

is clearly linear. To prove Theorem 1, it

is enough to consider the function f from some Gordin class G(T,F0). Then there are n,m ∈ Z

with m > n and g ∈ L2(Ω,Fm, µ), such that f = g − Eng.

To estimate the norm of ergodic averages, we use the following well-known formula (see,
for example, [15, § 1]):

∥

∥AT
Nf

∥

∥

2

2
=

1

N2

∑

|k|<N

(

N − |k|
)(

f ◦ T k, f
)

L2
=

‖f‖22
N

+
2

N2

N−1
∑

k=1

(N − k)Re
(

f ◦ T k, f
)

L2
.

When calculating scalar products, we will use the properties (1), (2) and (3). Taking in account
that g ◦ T k will be Fm−k-measurable, and Fm−k ⊂ Fn for k > m− n, for such k we obtain

(

f ◦ T k, f
)

L2
=

(

g ◦ T k − Eng ◦ T k, g − Eng
)

L2

= E
(

g ◦ T k · ḡ
)

− E
(

g ◦ T k · Enḡ
)

+ E
(

Eng ◦ T k · Enḡ
)

− E
(

Eng ◦ T k · ḡ
)

= E
(

g ◦ T k · ḡ
)

− E
(

En

(

g ◦ T k · ḡ
))

+ E
(

En−k

(

g ◦ T k
)

· Enḡ
)

− E
(

En−k

(

g ◦ T k
)

· ḡ
)

= E
(

g ◦ T k · ḡ)− E
(

g ◦ T k · ḡ
)

+ E
(

En

(

En−k(g ◦ T k) · ḡ
))

− E
(

En−k

(

g ◦ T k
)

· ḡ)
= 0 + E(En−k

(

g ◦ T k
)

· ḡ)− E(En−k

(

g ◦ T k
)

· ḡ) = 0.

Thus, for all N > m− n > 0

∥

∥AT
Nf

∥

∥

2

2
=

‖f‖22
N

+
2

N2

m−n−1
∑

k=1

(N − k)Re
(

f ◦ T k, f
)

L2
6

‖f‖22
N

+
2‖f‖22
N2

m−n−1
∑

k=1

(N − k)

=
‖f‖22
N

+
2‖f‖22
N

(m− n− 1)
(

1− m− n

2N

)

6
2‖f‖2(m− n)

N
.

The proof of Theorem 1 is complete. ⊲
Let us present several corollaries.

Corollary 1. For any function f from the Gordin class, the spectral measure σf satisfies

the estimate σf ((−δ, δ]) = O(δ) as δ → 0.

⊳ This follows from the well-known Kachurovskii criterion (see, for example, [15, Theo-
rem 3]), as well as from the fact that the spectral measure σf has a continuously differentiable
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density (see, [15, Theorem 7]), since most of the correlation coefficients (f ◦ T k, f)L2
, k ∈ Z,

vanish. ⊲

Corollary 2. For uniform convergence on the space Hn,m there is the estimate

∥

∥AT
N

∥

∥

Hn,m→L2(Ω,F,µ)
6

√

2(m− n)

N

for all N > m− n.
In connection with Corollary 2, we note a recent paper [16], in which subspaces with power-

law uniform convergence in von Neumann’s discrete-time ergodic theorem were studied.

Corollary 3. For any function f from Gordin space the following asymptotic relation

holds a. e.:

AT
Nf = o

(

lnN(ln lnN)β√
N

)

as N → ∞

for any β > 1/2.

⊳ This follows from Theorem 4.5 in [17]. ⊲

Corollary 4. If f is in the Gordin space G(T ), then f ∈ (I − T )αL2(Ω,F, µ) for every

0 < α < 1/2. For α = 1/2 a similar statement is not true.

⊳ The first statement follows from Theorem 1 and [12, Theorem 2.17]. For α = 1/2 we
will use the following criterion [12, Theorem 2.11 and Corollary 2.12]:

f ∈ (I − T )1/2L2(Ω,F, µ) ⇐⇒ sup
N>1

∥

∥

∥

∥

∥

N
∑

j=1

T jf√
j

∥

∥

∥

∥

∥

2

<∞.

For any nonzero f ∈ Hn,m with m−n = 1, using the fact that (T kf, f) = 0 for k 6= 0 we have

sup
N>1

∥

∥

∥

∥

∥

N
∑

j=1

T jf√
j

∥

∥

∥

∥

∥

2

2

= sup
N>1

N
∑

j=1

N
∑

i=1

(T jf, T if)L2√
ij

=
∥

∥f
∥

∥

2

2
sup
N>1

N
∑

k=1

1

k
= ∞. ⊲

3. Additional Properties of Gordin Space

Let us now discuss the question for which automorphisms the Gordin class exists, i. e., it
does not degenerate into a zero function.

Proposition 1. The Gordin space G(T ) = {0} if and only if T has zero Kolmogorov–Sinai

entropy h(T ).

⊳ It is clear that Gordin classes consist only of zero function if and only if all σ-algebras Fn

in the filtration coincide. This is equivalent to F0 = T−1F0, i. e., the σ-algebra F0 is invariant
under T, or is a factor. Thus, we need to find a condition on the automorphism T, equivalent
to the statement: for any σ-algebra F0 ⊆ F

T−1F0 ⊆ F0 =⇒ F0 = T−1F0.

Such a condition was found in the works of Adler [18] and Sinai [19], namely: h(T ) = 0. ⊲
Proposition 1 shows that L2 coboundaries need not be included in the Gordin space.

Theorem 1, Corollary 3, and Theorem 2 below apply toK-automorphisms, which have positive
entropy [13, Theorem 18.9], in particular to Bernoulli shifts [13, Proposition 3.51]. Ergodic
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automorphisms of n-dimensional tori (n > 2) are isomorphic to Bernoulli shifts [20], so have
positive entropy, but irrational rotations of the circle have zero entropy [21, p. 252].

In addition, recall that the condition h(T ) = 0 can also be expressed by the following
equality of σ-algebras (see, for example, [13, p. 320]):

Π(T,F) = F,

where Π(T,F) is the Pinsker σ algebra, i. e., Π(T,F) = {A ∈ F : h({A,Ω\A} = 0)}. Thus, for
automorphisms with positive entropy, the Pinsker σ-algebra Π(T,F) is a proper σ-subalgebra
of the σ-algebra F. If Π(T,F) = {∅,Ω}, then the automorphism T is called aK-automorphism.

For F0 satisfying T−1F0 ⊆ F0, let’s put

F−∞ =
⋂

n<0

Fn, F+∞ =
∨

n>0

Fn.

Proposition 2. Let h(T ) > 0. The Gordin class G(T,F0) is a linear space invariant

under the Koopman operator; and it is also dense subset of the first Baire category in

L2(Ω,F+∞, µ)⊖ L2(Ω,F−∞, µ).

⊳ For the Gordin class to be linear, it is sufficient to check that the sum of two functions
from the Gordin class is a function from the Gordin class generated by the same σ-algebra.
Let f ∈ Hm,n and g ∈ Hp,q, i. e.,

f = ϕ− Enϕ, g = ψ − Eqψ

for some functions ϕ ∈ L2(Ω,Fm, µ) and ψ ∈ L2(Ω,Fp, µ). Then, assuming for definiteness
that q 6 n, we obtain

f + g = ϕ+ ψ − Enϕ−Eqψ = ξ − Eqξ,

where ξ = ϕ+ ψ − Enϕ. It is clear that

Eqξ = Eq(ϕ+ ψ − Enϕ) = Eqϕ+ Eqψ − EqEnϕ = Eqψ.

Thus, it showed that
Hm,n +Hp,q ⊂ Hmax{m,p},min{n,q}.

For the Gordin class to be invariant with respect to the Koopman operator, it is sufficient
to show that THn,m = Hn−1,m−1. Let g ∈ L2(Ω,Fm, µ), then g ◦ T ∈ L2(Ω,Fm−1, µ) and

(g − Eng) ◦ T = g ◦ T − E(g|Fn) ◦ T = g ◦ T − E
(

g ◦ T |T−1Fn

)

= g ◦ T − En−1(g ◦ T ).

Let now f ∈ L2(Ω,F+∞, µ)⊖ L2(Ω,F−∞, µ). By definition (Emf)m>0 is a martingale
and (Enf)n<0 is a reverse martingale. Then the two-parameter family of functions
fm,n = Emf − EnEmf = Emf − Enf will approximate the function f as m→ +∞ and
n→ −∞. This follows from Doob’s theorem on the convergence of direct and reversed
martingales (see, for example, [13, Theorem 14.26]).

The first Baire category for the Gordin class follows from the fact that it is a countable
union of closed spaces Hm,n. ⊲

Theorem 2. Let h(T ) > 0. The Gordin space G(T ) is invariant under the Koopman

operator; and it is also dense subset of the first Baire category in L2(Ω,F, µ) ⊖
L2(Ω,Π(T,F), µ).
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⊳ Invariance follows from Proposition 2. By the Rokhlin–Sinai theorem (see, for example,
[13, Theorem 18.9]) on the characterization of K-automorphisms, there is an extremal σ-sub-
algebra F0 ⊂ F satisfying T−1F0 ⊆ F0, such that

F−∞ = Π(T,F), F+∞ = F.

From Proposition 2 it follows that the Gordin class G(T,F0) is an everywhere dense subset
of L2(Ω,F, µ)⊖ L2(Ω,Π(T,F), µ). On the other hand, for any σ-subalgebra F0 ⊂ F satisfying
T−1F0 ⊆ F0, from the work of Volný [22, Theorem 2] it follows that

L2(Ω,F+∞, µ)⊖ L2(Ω,F−∞, µ) ⊂ L2(Ω,F, µ)⊖ L2(Ω,Π(T,F), µ).

Indeed, let f = g − E(g|F−∞) for g ∈ L2(Ω,F+∞, µ). Then for any h ∈ L2(Ω,F, µ) we have
(

f,E(h|Π(T,F))
)

L2
=

(

E(f |Π(T,F)), h
)

L2
= 0

since

E(f |Π(T,F)) = E(g|Π(T,F)) − E(E(g|F−∞)|Π(T,F))
= E(g|Π(T,F)) − E(E(g|F−∞ ∨Π(T,F))|Π(T,F)) = E(g|Π(T,F)) − E(g|Π(T,F)) = 0.

In terminology of Volný the closure cℓG(T ) is the set of all difference decomposable functions
(see [22, p. 116]).

The first Baire category for G(T ) follows from [23, Theorem 2] and Corollary 3. ⊲

Corollary 5. If T is a K-authomorphism, then the Gordin space G(T ) is dense in

L0
2(Ω,F, µ) :=

{

f ∈ L2(Ω,F, µ) :

∫

f dµ = 0

}

.

It shows that for a K-automorphism on a standard probability space, the Gordin space
is not closed. Otherwise we have, by Theorem 1, a uniform rate of convergence in the mean
ergodic theorem, contradicting the well-known Krengel’s result on arbitrary slow convergence
in the mean ergodic theorem.

In conclusion, we note that it would be interesting to find a natural dense class of functions
for which the rate of convergence of ergodic averagess for an abstract automorphism with zero
entropy can be calculated.

The author thanks the referee for remarks and suggestions for improving the paper.
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22. Volný, D. Martingale Decompositions of Stationary Processes, Yokohama Mathematical Journal, 1987,

vol. 35, pp. 113–121.
23. Podvigin, I. V. On Possible Estimates of the Rate of Pointwise Convergence in the Birkhoff

Ergodic Theorem, Siberian Mathematical Journal, 2022, vol. 63, no. 2, pp. 316–325. DOI:
10.1134/S0037446622020094.

Received December 21, 2023

Ivan V. Podvigin

Sobolev Institute of Mathematics of the Siberian Branch of the RAS,
4 Ac. Koptug Ave., Novosibirsk 630090, Russia,
Senior Researcher

E-mail: ipodvigin@math.nsc.ru



102 Podvigin, I. V.

Владикавказский математический журнал

2024, Том 26, Выпуск 2, С. 95–102

О СКОРОСТИ СХОДИМОСТИ ЭРГОДИЧЕСКИХ СРЕДНИХ
ДЛЯ ФУНКЦИЙ ИЗ ПРОСТРАНСТВА ГОРДИНА

Подвигин И. В.1
1 Институт математики им. С. Л. Соболева Сибирского отделения РАН,

Россия, 630090, Новосибирск, проспект ак. Коптюга, 4

E-mail: ipodvigin@math.nsc.ru

Аннотация. Для автоморфизмов с ненулевой энтропией рассмотрен естественный класс функций,
названный пространством Гордина. Это пространство есть линейная оболочка классов Гордина, по-
строенных по некоторой инвариантной относительно автоморфизма фильтрации σ-алгебр Fn. Функция
из класса Гордина представляет собой ортогональную проекцию относительно оператора I − E(f |Fn)
некоторой Fm-измеримой функции. После работы Гордина о применении мартингального метода для
доказательства центральной предельной теоремы, эта конструкция получила свое развитие в работах
Далибора Волны. В этой обзорной статье мы рассматриваем эту конструкцию в эргодической теории.
Показано, что скорость сходимости эргодических средних в L2 норме для функций из пространства
Гордина просто вычисляется и равна O( 1

√

n
). Также показано, что пространства Гордина есть плотное

множество первой катеогрии по Бэру в L2(Ω, F, µ)⊖ L2(Ω,Π(T,F), µ), где Π(T,F) — σ-алгебра Пинскера.

Ключевые слова: скорости сходимости в эргодических теоремах, фильтрация, мартингальный
метод.
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