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Abstract. We consider classes of mappings of Carnot groups that are intrinsically Lipschitz and defined
on compact subsets, and describe the metric characteristics of their images under the condition that
a sub-Lorentzian structure is introduced on the image. This structure is a sub-Riemannian generalization
of Minkowski geometry. One of its features is the unlimitedness of the balls constructed with respect to
the intrinsic distance. In sub-Lorentzian geometry, the study of spacelike surfaces whose intersections
with such balls are limited, is of independent interest. If the mapping is defined on an open set,
then the formulation of space-likeness criterion reduces to considering the connectivity component of
the intersection containing the center of the ball and analyzing the properties of the sub-Riemannian
differential matrix. If the domain of definition of the mapping is not an open set, then the question arises
what conditions can be set on the mapping that guarantee the boundedness of the intersection of the image
of a compact set with a sub-Lorentzian ball. In this article, this problem is resolved: we consider that part
of the intersection that can be parameterized by the connectivity component of the intersection of the
image of the sub-Riemannian differential and the ball. In addition, using such local parameterizations,
a set function is introduced, which is constructed similarly to Hausdorff measure. We show that this set
function is also a measure. As an application, the sub-Lorentzian area formula is established.
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1. Preliminaries

The article is devoted to research in the field of geometric measure theory on sub-

Lorentzian structures. These structures are a nonholonomic generalization of Minkowski
geometry (see [1] and references therein). Research into both the structures themselves and
their applications in physics |2, 3| began relatively recently. Article [4] is one of the first
works in which such structures were studied. For further acquaintance with recent results
established for sub-Lorentzian structures and their generalizations (for example, in the case
of a multidimensional timelike coordinate), see, e. g., [5] and the list of cited literature.

#The research is carried out in the framework of Russian state assignment for Sobolev Institute of

Mathematics, project Ne FWNF-2022-0006.
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DEFINITION 1 (see., e. g., [6]). A Carnot group is a connected simply-connected Lie
group G such that its Lie algebra V is graded, i. e., is represented in the form

M
V=V, M. Vil=Vj, <M [Vi,Vy]={0}
j=1

Denote the dimension of Vj, (at each x) by dim Vj. If X; € Vj then the number £ is called
the degree of the field X; and is denoted by deg X .

DEFINITION 2. Let G be a Carnot group of the topological dimension N, and
w = exp (Z@]L w; X;)(v). Define the value dy as

da (v, w) = max < Z w?) 2, < Z w?) 2'2, e ( Z w?) .

Jrdeg X;=1 Jj:deg X ;=2 jrdeg X;j=M

The set {w € G : da(v,w) < r} is called a ball with respect to da of the radius r > 0 centered
at v, and is denoted by Boxa(v, 7).

By the formulas of the group operation, which follow from the Baker-Campbell-Haussdorf
formula, direct calculations imply that the Hausdorff dimension of the group G with respect
to do equals

M
v= Zj dim Vj.
j=1
DEFINITION 3. Define a set function 7 for A C G as

M
v o 1 3 v, . . . .
HV(A) = deimvk -(%L)Hémf { %ri : g\]BOXQ(yZ,TZ) DAy, €A 1 < 5},
where the infimum is taken over all coverings of A.
To this end, the symbol w; stands for a volume of a Euclidean ball of the unit radius in R’
The set function J#" is a measure; it follows from the quasi-additivity of J#* and results
of [7, 8]. It is also easy to prove that #” and " are absolutely continuous one with respect
to another, and are doubling. The derivative of J#V with respect to " at x € G equals
det(g(z)), where g is a Riemann tensor on G defined by the basis vector fields X,..., Xy
(note that G with its basis vector fields can also be considered as a Riemannian manifold).

2. Sub-Riemannian Differentiability and Sub-Lorentzian Structure

Consider one more Carnot group G with Lie algebra V= @2/[:1 \N/k and basis vector fields
)Z'l, . ,)Z' ~- Denote the quasimetric constructed on G in the same way as in Definition 2
(with obvious changes), by da.

Let us pass to the sub-Riemannian analogue of differentiability for our case, and to some
important results.

DEFINITION 4 ([9]; see also [10]). Let G and G be Carnot groups, 2 C G, and ¢ : @ — G.
The mapping ¢ is he-differentiable, or differentiable in the sub-Riemannian sense, at the (limit)
point z € Q if there exists a horizontal homomorphism .Z, : G — G such that

C@(@(y),fx@» =o(1) -do(z,y), where o(1) =0 if Q>y — x. (1)

The he-differential (or sub-Riemannian differential) £, is denoted by De(z).
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DEFINITION 5. Let G and G be Carnot groups, 2 C G, and ¢ : Q — G. If @ is a Lipschitz
mapping with respect to quasimetrics dy and (;lVQ then ¢ is Lipschitz in the intrinsic sense.

The next result was obtained for the first time by P. Pansu [9] for open sets, and by
S. K. Vodopyanov ([11]; see also, e. g., [10], where it is established for a general case of
Carnot—Carathéodory spaces) for measurable sets.

Theorem 1. Let G and G be Carnot groups, E C G be a measurable set, and ¢ : £ — G
be a Lipschitz mapping in the intrinsic sense. Then it is hc-differentiable almost everywhere.
Moreover, Dcp consists of the “diagonal” (dim Vi, x dim Vi )-blocks, while all other elements
vanish.

NOTE 1 (see, e. g., [12]). For arbitrary € > 0, there exists a set 3 such that #"(X) < ¢
and on E'\ ¥ the value o(1) from (1) is uniform.

To this end, by “diagonal” ones, we mean the blocks consisting of elements such that their
lines’ numbers correspond to the fields from T7k, and columns’ numbers, to the fields from Vg,
k =1,...,M. Thus, the dimension of kth block is dim Vk X dlm Vi, k =1,..., M. Denote
“diagonal (dim Vk x dim V})-blocks constituting the matrix of Dgp, by Dkgp, k: =1,...,M.

In the paper, we assume that D C G is compact, it possesses the properties of the set
E \ ¥ from Note 1, the mappmg @ is contmuously hc-differentiable in the topology of its
domain, also, for G and G we have M > M, and for at least one ko € [1, M] we have
dim Vko > dim Vj,, and dim Vk > dim Vk for all the other k& # ko. Then, the topological
dimension N of G is strictly greater than N.

For each k = 1,..., M, choose integers dim ‘N/,; € [0,dim Vi, — dim Vi]. Set mg = 0 and
i = Sor, dim V.
DEFINITION 6. Let w = exp (Zfil wl)?z)(v) Put 93(v,w) be equal to

k

T ﬁk_1+dim\7k_ i Nj—1+dim \7,;
2 2 2 2
k=1,...M . ~_ o~ ~ =~ =
Jj=np_1+dimV, +1 J=ng_1+1 j=Rk_1+dim V" +1 Jj=ng—1+1

The set {w € G: 23(v,w) < r?} is called the ball in 93 of the radius r > 0 centered at v and
is denoted by Boxy(v, 7).

3. Sub-Lorentzian Analogs of Distance and Measure

To study the metric properties of surfaces lying in @, it is enough to consider the above
analogue of the squared distance 03, without considering the roots of the quantities involved
in the definition. Let us first describe a measure constructed with a system of these balls on
classes of images of open sets lying in G. In [5], the measure of the image B C G of an open
set from G is defined as

- lim inf { Z’I“ZV : U (Boxa(:cl-,ri) i B) DB, x;eB,r; < 5},

0—0 ‘ )
1€N €N

where the infimum is taken over all coverings of B, wy = Hg/il Wdim v, and Boxy (24, ;) N"*' B
denotes a connectivity component of Boxp(z;,7;) N B containing z;. The necessity of using
Boxy (x4, 1) N* B instead of Boxp(z;,7;) N B relies to the specifics of the sub-Lorentzian
structure, that is, a non-boundedness of balls. See details and comments in |5, 13].
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In our case, we consider the image of a compact set, which is not open in the general case.
Therefore, consideration of the connectivity component does not make sense, and it needs to
be replaced with another object, which is the image of a subset of some open connected set.
To define a new set function and prove its correctness, we first of all describe the class of
mappings ¢ under study and derive the main properties of its sub-Riemannian differential.

In each “diagonal” (dim Vj x dim Vj,)-block Dy, of the sub-Riemannian differential Do,
denote the part consisting of first dim V,~ lines, by lA),;, and the rest, by ﬁ;, k=1,....,M.
The following is true.

Theorem 2. Fix k such that the rank of ﬁ,‘: equals i, < dim Vy, ri > 0, and orthogonal
mapping Oy, that transfers lines of ﬁk to R™ x Qdim V=%

Assume that for rj, independent lines of [lA),jOk] with numbers i1,...,%,, constituting
the matrix E;fk, the following holds: lengths of columns of [ﬁ;Ok] (Eﬂ;)_l do not exceed
1/ry — ¢, ¢ > 0. Then the validity of this property for a matrix composed of lines with
numbers 1y, ..., i, does not depend on the choice of Oy.

Moreover, if Eﬂ; exists for some collection of lines and some Oy, then the validity of
the estimate of lines’ lengths fails if a single line from Ejk is replaced by a line from [ﬁ,; Ok] .

Here [Q)] denotes a part of a matrix () consisting of its first ry, columns.

To this end, we will assume that the matrix of ﬁgp enjoys conditions of Theorem 2.
Moreover, suppose that on D \ Dy, the mapping ¢ is bijective on its image, where
Dy={yeD: rank Do (y) < N}.

For images of every mapping w ﬁgp(y)(w), y € D, the next theorem is true [5].

Theorem 3 (see also [5, Theorem 2.1]). Fix y € D and v = ¢(y). Then, if the above
assumptions on ¢ hold, the following is true.

1. The intersection of {w € G : 93(z,w) < 0} and Im Dey(y) consists of a single point .

2. The intersection of a ball Boxy(z,r) with Im De(y) is bounded.

3. On Im Dy(y) (for each fixed y), the values (dy)? and 92 are locally bi-Lipschitz
equivalent.

Let us pass to the description of the measure on the images of compact sets. We will
construct it by analogy with the Hausdorff measure described in Definition 3. As stated
earlier, the main idea is to parameterize by a subset of some open connected set the fragment
of intersection of the image of the mapping with a ball in 92, which is part of the covering of
the image of the mapping. In addition, in contrast to [5], the degeneracy of the sub-Riemannian
differential is allowed. For this reason, and also due to the specificity of the parameterization
of intersections, we introduce additional restrictions on the radii of not only the covering balls,
but also their preimages, and show that even under such restrictions the set of coverings is
non-empty.

Fix € > 0, then [10] there exists such § = §(¢) > 0 that if y,v € D, and da(y,w) < § then

da (Dep(y) (w), p(w)) < edy(y, w).

As parameterizing sets, consider the images of sub-Riemannian differentials of the mapping,
which are analogues of tangent spaces. Then the preimages of the intersections of such “tangent
planes” and 03-balls must be small enough to ensure that the quantity o(1) from the definition
of sub-Riemannian differentiability is small. For each = = ¢(y), y € D\ Do, x ¢ ¢©(Dy), and
e > 0, denote by the symbol 7, . the value

sup {r >0: ﬁgo(y)q( Boxp (z,7) N* Im ﬁgo(y)> C Box; (y, min{d(¢),e}) }.
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Also, for y = ¢! (), where y € D\ Dy and p(y) ¢ »(Dyo), put rye = 1y If y € Dy or
©(y) € p(Dy) then ry . is equal to

sup {7“ >0: ﬁgp(y)71< Boxy(z,7) N* Im ﬁgp(y)> N (ker ]330(y))l C Boxg (y, min{d(e), 6})}

(if y ¢ Do and ¢(y) € ¢(Dp) then (ker Dp(y))* = G). Set 7y = SUDy.o(y)=z 1 T, }-

By Theorem 3, the values 74, ry . are positive for all ¢ > 0, x € (D), y € D. This
property follows from the boundedness of the intersections of images of the sub-Rienammian
differentials Im Dy (y) with balls Boxy (2, 1), y € D, = ¢(y).

Let us describe one more value, that is, maximal possible radius of a sub-Riemannian ball
containing the preimage of the intersection of a “tangent plane” and 93-ball. For y and ¢ > 0
and r < 1y, and define 7., . as

inf {7>0: ﬁgo(y)_1< Boxy(x,r) N* Im ﬁgo(y)> N (ker ]330(y))L C Boxa(y,7)}.

If ﬁgp(y) is degenerate then we consider the intersection with the orthogonal complement of
its kernel since otherwise such preimage is not bounded. If Dy(y) = 0 then put

1
?7-7%5 = min { max {1, 7/\} r, (5(8), E},
Lip(Dep)

where Lip(Dy) = Sup,, dy(0(y), Dp(y)(w)), y € D, dy(w,y) = 1. Since Dy is continuous on
the compact set D, we have Lip(ﬁcp) < 00.

Fix z € o(D), z = ¢(y), and consider Boxy (z,7)N*Im Dg(y), r > 0. Let 7, be a projection
o(w) — De(y)(w), where o(y) = . For A C o(D), z € A, £ > 0, and 7 < Tz, denote by
Box, (z,7)N" A the set

7' (Boxy(z,7) N” Im ﬁgo(y)), if rank Dio(y) = N and = ¢ o(Dy),
U ﬂ;;E(BOXa(x,min{r, Tyet) N Im ﬁ(p(y)), if rank ﬁ(p(y) < Nuzd¢e(D\ Dy),

y:ply)=z

o, if z € (D \ Do) N (Do),

where ., . equals the mapping

p(w) = Do(y)(w), if w e Boxa(y,Tpye), p=min{r,r,.}, and Dp(y) # 0,
o(w) = Dp(y)(w), if w e Boxa(y,7ry,) and Dp(y) =0,

x, x ¢ p(D), otherwise,
x ¢ p(D) is a fixed point, and & is the union of the sets
7, ' (Boxp(z,7) N Im ﬁgo(y))

and R
Trgie ( Boxo (2, min{r, 7, . }) N* Im Dp(y).

T‘?y76
yip(y)==

Note that 7, ;76 is not a mapping in the general case, since it may assign to one element

Do(y)(w) several elements w' € Boxa(y,d(y)) such that De(y)(w') = De(y)(w), and
o(w') # o(w). We use m,, . instead of m, due to necessity of boundedness of intersections
Boxy(z,7) N@(Dyp) and their preimages.
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DEFINITION 7. Assume that A C G is a subset of the image of a compact set D C G
under Lipschitz in the intrinsic sense mapping ¢ which is hc-differentable everywhere on its
domain. Suppose that on D\ Dy, the mapping ¢ is bijective on its image. Define 74" (A) as

M
H Waim v - lim inf { Z(sﬁ«g : U (Boxo (s, ri)A™ A) D A, 2; € A,
k=1 ieN ieN

ri < min{e, 0(g), 74, e}, 0 = € if o 1 (x;) N Do # @ and §; = 1 if z; ¢ go(Do)},

where the infimum is taken over all coverings J;cy (Boxo (s, 7)1 "7 A) D A of A.

4. Main Results

Since the goal of the paper is to describe the metric characteristics of subsets of ¢(D), it
is necessary to study the properties of the set function 7Z}”. In particular, we need to show
that it is defined correctly (that is, the class of coverings from Definition 7 is non-empty) and
is a measure for the class of mappings under study. To establish this, we prove the following
properties.

Lemma 1. The set function
G D Am 7 (p(A)) (2)

is defined correctly for images of sets of zero #¥-measure, and it is absolutely continuous
with respect to 7 on G.

A stronger statement is also true.

Theorem 4. The value S is defined correctly for images of measurable sets EE C D in
the sense that the set of coverings from the definition of 73" (p(FE)) is not empty for each e > 0.

Moreover, there exists such T = T(D) < oo that 4 (p(E)) < TV (E), where T < o0
and it depends on G and ¢ only.

It is not hard to prove the result on the degeneration set.
Lemma 2. We have 7" (¢(Dy)) = 0.

Despite the obviousness of the statement about the image of a degeneracy set, establishing
that for the image of an arbitrary measurable set the sum of terms with coefficients tending
to zero (of the form J§; = ¢) from Definition 7 is small is a non-trivial task. The difficulty is
that we are looking for an infimum on the sums. For this reason, it seems natural to conclude
that the more balls with centers at the points of p(Dg) and, accordingly, d; = € cover the set,
the lower the value of the sum we achieve. The next theorem shows that, in fact, this is
not the case, and the sum of terms with §; = € can be arbitrarily small for values close to
the infimum.

Theorem 5. Consider a closed set E, its image B = go(é N D), and o > 0. Suppose that
go > 0 is such that for each € < g, the value 7.(B) being equal to

M
deika - inf { Zéﬂ’;’ : U (Boxy(z,7)N"'B) D B, x; € B,
k=1 ieN 1€N

ri < min{e,8(g), 7z, e}, 0 = € if o ' (x;) N Do # @ and §; = 1 if z; ¢ go(Do)},
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differs from 7Y(B) not more than by o/4. Then, for sufficiently small £ > 0, £ < ¢g, and
coverings

U (Boxa(xi,ri)ﬁxiB) OB, 7;<min {5,5(5),%1',5}

1€EN
such that
M o
deika . Z(SZT;/ — %2(3) < Z,
k=1 ieN
the estimate
M
¢ [[wamv - >, <o
k=1 i:x;€p(Do)

holds.
This statement is one of key results in the proof of the quasi-additivity of the set
function (2).

DEFINITION 8 (see, e. g., [7, 8]). A set function ® is called quasi-additive if for any finite
collection of pairwise disjoint open balls {B; }3]:1 lying in some open ball By, the inequality

®(B;) < ©(Bo)
j=1
holds.

Theorem 6. The set function (2) is quasi-additive.
The above results together with [7, 8] imply the following property.

Theorem 7. The function (2) is differentiable almost everywhere with respect to the mea-
sure SV for almost all x € D the limit

vy I (e(Boxa(y, 1))
d'(y) = 715% %V(BOX;(Z/,T))

= Dy 7 (y)
exists. Moreover, the function (2) is recoverable by its derivative: for A C D, we have

A (@A) = [ Do) 1),
A

Finally, we deduce the area formula.

Theorem 8. Let G and G be Carnot groups, D C G is a compact set, and the mapping
p: D — G is continuously hc-differentiable in the tolopology of its domain, and the value o(1)
from (1) is uniform on D. Assume that ¢ is bijective on its image on D \ Dy, and D¢
enjoys conditions of Theorem 2 everywhere. Suppose also that M > M, and for at least one
ko € [1, M] the inequality dim Vi, > dim Vj, holds, and dim V}, > dim V;, for all other k # kq.
Then

o'(y) = [ \/det(Df ¢(v)* Dy ¢ly) — Dy ¢ly)* Dy ¢(v)
k=1

for almost all y € D\ p~(¢(Dy)), and the area formula

M
11 ¢det (D; o(y)* D oly) — Dy ¢(y)* Dy ¢(y)) dA” (y) = 5 (9(A))
AnD k=1
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holds.

NoTE 2. If E C G is a measurable set of finite measure, ¢ : £ — G is continuously hc-
differentiable almost everywhere, then for arbitrary € > 0, there exists a compact set D C E
such that #(E \ D) < e, and on D the value o(1) from (1) is uniform; thus, the set D
satisfies the conditions of Theorem 8.

10.

11.

12.
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METPUYECKUNE XAPAKTEPUCTUKN KJIACCOB KOMITAKTHBIX MHO?KECTB
HA T'PYIIIIAX KAPHO C CYBJIOPEHIEBOW CTPYKTYPOU
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Amnnoranusi. Mb1 paccmaTrpuBaeM Kjacchl oTrobpazkenuit rpynn KapHoO, SBISOMMUXCS JIMIIIUIIEBBIMA BO
BHYTPEHHEM CMBICJIE U OIPEJIEJIEHHBIX Ha KOMITAKTHBIX TOJIMHOXKECTBAX, U OIMUCHIBAEM METPUUYECKHE XapaKTe-
pucTuku nx 06pa30B IPU YCJIOBUU, 9TO Ha 00/IACTHA 3HAYEHUN 3a/aHa CyOTOpEeHIeBa CTPYKTypa. Takast cTpyK-
Typa gBjsgeTcs cyOopuMaHoBbIM 06001enneM reomerpun Munkosckoro. OHo U3 ee 0COGEHHOCTEN SBJISIETCS
HEOTPAHUYEHHOCTh IIapPOB, ITOCTPOEHHBIX OTHOCUTEIBLHO BHYTPEHHETO PacCTosiHus. B cybiiopeHIeBoit reomer-
pPUU MHTEPEC IIPEJICTABJIAET UCCIIEJIOBAHNE IIPOCTPAHCTBEHHO-I0IO0HBIX TIOBEPXHOCTEH, IepeceveHnst KOTOPhIX
C TAKMMH IIapaMu orpanndenbl. Ecim orobpakeHue onpesiesieHo Ha OTKPBITOM MHOXKECTBE, TO (pOPMYIUPOBKA
KpUTEpUsi TPOCTPAHCTBEHHOIOI06MST CBOIUTCS K PACCMOTPEHMIO CBI3HOM KOMITOHEHTBI TIEPECEdeH s, COIeprKar-
et IeHTp IIapa, 1 aHAJIN3Y CBOWCTB MaTpuIilbl cybpumanosa auddepentmana. Ecan xke 0671aCcTh OnIpe/iesieHns
0TOOparkeHusl He SBJISIETCS OTKPBITBIM MHOXKECTBOM, TO BOZHHUKAET BOIPOC, KAKUE MOXKHO 33JIaTh YCJIOBUS HA
oTobparkeHne, rapaHTUPYIOIINe OIPAHUYEHHOCTh IepecevyeHnsi o0pa3a KOMIIAKTHOTO MHOXKECTBA C IIApOM BO
BHyTpEHHEl MeTpuKe. B 1aHHOI cTaThe 5TOT BOIPOC PEIIeH: PACCMATPUBAETCA Ta YaCTh [I€PEceueHnsl, KOTopast
mapaMeTpU3yeTCsl CBsA3HON KOMIIOHEHTO mepecedeHns: obpasa cyopumanosa muddepenimaia u mapa. Kpome
TOrO, C MIOMOIIBIO TAKUX JIOKAJbHBIX MIapaMeTpU3aIlnii BBe/leHa (DYHKIINS MHOYKECTBA, SBJISIIONIASICS aHAJIOIOM
Mepbl Xaycaopda, n TOKa3aHo, ITO OHA SBJISIETCs Mepoil. B KadecTBe mpuiiozKeHus: yCTAHOBJIEHA CYOJIOPEHIIEBA
dopmyna mIonam.

KuroueBrbie cioBa: rpynna Kapno, sunmmieBo oTobparkeHne, KOMIAKTHOE MHOYKECTBO, CYOJIOPEHIIEBa
CTPYKTYypa, KBasua I UTUBHAS (DYHKIIUST MHOXKECTBA, (POPMYJIa IJIOIA,IH.
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