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Awnnoranus. A two-dimensional inverse coefficient problem of determining two unknowns — the coefficient
and the kernel of the integral convolution operator in the elasticity equation with memory in a three-
dimensional half-space, is presented. The coefficient, which depends on two spatial variables, represents
the velocity of wave propagation in a weakly horizontally inhomogeneous medium. The kernel of the
integral convolution operator depends on a time and spatial variable. The direct initial boundary value
problem is the problem of determining the displacement function for zero initial data and the Neumann
boundary condition of a special kind. The source of perturbation of elastic waves is a point instantaneous
source, which is a product of Dirac delta functions. As additional information, the Fourier image of the
displacement function of the points of the medium at the boundary of the half-space is given. It is assumed
that the unknowns of the inverse problem and the displacement function decompose into asymptotic series
by degrees of a small parameter. In this paper, a method is constructed for finding the coefficient and the
kernel, depending on two variables, with an accuracy of correction having the order of O(¢?). It is shown
that the inverse problem is equivalent to a closed system of Volterra integral equations of the second kind.
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1. Problem Statement
Consider for x = (z1,292,73) € R3, t € R, 23 > 0, the integro-differential equation
Pu D ou / °L 9 ou
) P — k(xy,t — = = dr, (1.1
%~ o) (st ) + [t =) > (atara) ) (wr)r, (1)
= 0 =

under the following initial and boundary conditions

u t<0= 0, (1.2)
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ou
a(xs,0) 8—(£C,t) + /k‘(ml,t — 7')8—(5[?,’7') dr = —6(21)0(22)d' (1), (1.3)
T3 0 r3=-+0
u(z,t) is the displacement function, a(xy,x3) is the velocity of propagation of transverse
elastic waves, k(z1,t) is the memory function showing the viscous properties of the medium;

0(+) is the Dirac delta function, ¢’(-) is the derivative of ().

The direct problem is to find the function u(z,t) from equation (1.1) under the initial
and boundary conditions (1.2), (1.3).

The inverse problem: to determine the function u(x,t) coefficient a(xz,x3) and the
memory kernel k(z1,t), t > 0, if additional information is known

F$1,1'2 [’U,](I'g,t, v, )\)’$3:+0 = g(t7 v, )‘)7 t> 07 v, )‘ € Ra (14)

where g(t,v, A) is the measurement data and

Fgchg[;2 [u](.%'g,t, v, )\) = / U(m',t)e_i(”xl'H‘W) dxq dxo

—0o0

is the Fourier transform of the function u(x,t) by variables x1, x5 (next,  is imaginary unit).

DEFINITION. A pair of functions a(z2,23) € (R X [0,00)), k(z1,t) € (R x [0,00)) is called
the solution of the inverse problem (1.1)—(1.3) if the solution of the direct problem (1.1)—(1.3)
u(z,t) from the class of generalized functions D’(R% x R) satisfies (1.4) for g(¢,v, A), belonging
to the class D'([0,00)) for a fixed nonzero (v, \).

The problems of determining the kernel of the integral convolution operator is a trend in
the theory of inverse problems that arose at the end of the last century [1-8]. A more detailed
analysis of the sources is presented in the monograph [9], which is one of the latest fundamental
works in the theory of inverse problems for equations of memory type. It presents the results
of a study of the well posedness of one-dimensional and multidimensional inverse problems for
hyperbolic integro-differential equations of memory type. Theorems on the unique solvability
of the inverse problems are proved, and stability estimates are obtained. Among the first
results on inverse problems of linear viscoelasticity (close to this) can be noted [5, 10, 11].
In [5], the local solvability and global uniqueness in the one-dimensional inverse problem of
determining the kernel of the integral convolution operator of the viscoelasticity equation with
constant coefficients are obtained. In this paper, the direct problem is the Cauchy problem with
continuous data. The inverse problem is replaced by a system of Volterra integral equations
of the second kind. In [10, 11], the method of separation of variables is used to solve inverse
problems in a limited domain, by which the problems are reduced to a system of integral
equations of the Voltaire type with respect to unknown functions depending on a time.

The further results of research, in particular, over the past ten years is shown, for example,
in [12-29]. In [12-17| there are inverse problems on the determination of kernels having a
special structure. The goal is to reduce the initial problem to solving problems of integral
geometry using a singular source (delta function) of wave disturbance. The unknowns to
the inverse problems are the coefficients of the equation and the spatial parts of the kernel.
In articles [18, 19], the main results are the global unique solvability of one-dimensional inverse
problems using spaces of continuous functions with a weighted norm. In recent years, there
has been an increasing of the number of publications on numerical calculations of the integral
operator kernels [20-24].
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Of most interest are multidimensional kernel determination problems when the unknowns
depends on two or more variables. The multidimensional inverse problem for (1.1)—(1.3)
and additional information (1.6) have been investigated in [25|. In this work, based on
a combination of the method of scales of Banach spaces and the method of weight norms,
a global unique solvability of the problem of determining the kernel of k(x,t) in the class of
functions analytic in the variable x and smooth in the variable t was obtained.

In [26], the problem of determining the two-dimensional kernel of an integro-differential
equation in a medium with weakly horizontal inhomogeneity is considered, in which method
from [27] is developed.

Among the works devoted to coefficient inverse problems for viscoelastic media, which
also determine the kernels of integral operators, one can note the works [28, 29|. For example,
in [29] the one-dimensional problem of simultaneous determination of the wave propagation
velocity and the kernel of the integral operator was studied. It is shown that both unknowns are
uniquely determined by setting the Fourier image for the spatial variable of solving a direct
problem on the boundary of a half-space. A conditional assessment of the stability of the
solution of the problem is established.

The fundamental difference from the above results and at the same time the significant
novelty of this work is the fact that it presents a multidimensional inverse problem of
simultaneously determining the coefficient of the viscoelasticity equation and the kernel of
the integral operator describing the properties of a viscoelastic medium for a half-space.

It should be noted that simultaneous recovery of several parameters for media with
aftereffect is undoubtedly an actual problem from the point of view of applications, since
it becomes possible to analyse the influence of the memory of the medium, for example, on
the velocity of wave propagation in space. For practical applications, it is more interesting
when the characteristics of the environment depend on two or more variables. For example,
for geophysics, one of the main problem is the quantitative assessment of horizontal
inhomogeneities in the velocities of seismic waves [30].

In this paper, which is a continuation of the study presented in [31], a new approach to the
simultaneous determination of parameters depending on two variables in the viscoelasticity
equation for a half-space is proposed. The novelty of the approach lies in the assumption that
k(x1,t), a(xq,x3) weakly depend on the horizontal variables x, x4 as follows:

a(zo,r3) = ag + exeay(x3) + 0(62),

, (1.5)
k:(xl,t) = k‘o(t) + 8$1k31(t> + 0(6 ),

where ¢ is small parameter.

In the equations (1.5) ag is a given positive constant.

The main purpose of this work is to construct a method for finding ko (t) and a1 (x3), ki1 (t)
with an accuracy of O(£?). To do this, as we will see later, it is enough to set the g(¢,v, \) for
two different non-zero sets (v, \;), j = 1,2.

The necessary and sufficient conditions for the global unique solvability of the inverse
problem (1.1)—(1.4) and its stability estimate represent the theoretical significance of the
work.

The theoretical results are useful for applications in solving seismic problems and the
numerical implementation of this study. It has been shown [32] that with an increase in the
strength of an earthquake, the soil behaves not as an elastic, but as a viscoelastic body. Soils
are medium with memory, that is, the state of such medium at the current time depends on
the entire background of the process. This is indicated, for example, in [33|, which provides
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a detailed review of studies to clarify the nature of absorption of seismic waves in soils and
examines the main patterns of absorption of stress waves in dispersed and semi-bedrock. As
shown in [34], failure to take into account the absorbing properties of the medium leads to
significant distortions in the restoration of the velocity model of the medium. The author
is going to make a numerical analysis of the effect of the memory function on the wave
propagation in half-space later. The algorithms given in the monograph [35] are also the basis
for numerical analysis.
We seek the solution to (1.1)—(1.3) in form of the series in powers of &

u(z,t) = Zajuj(x,t). (1.6)
=0

Using (1.4) and (1.6), we have

o0

= U(Cﬂl,CCQ,t) = Z&jUj($1,$2,t).
7=0

Fo L lu](zs,t,v,\)

T1,22

r3=40

It is not difficult to verify that u; (hence U;) are even in x1, x5 for even j and odd for odd j.
Thus, according to the well-known function U(z1,x2,t), Up(xz1,x2,t) and Ui (x1,z2,t) can be
found up to O(e?) [27]:

U(fEl, x2, t) + U(_'Tla —x2, t)

Uo(z1,22,t) = 5 )
U(xy1,x9,t) —U(—x1, —22,1
Ul(.%'l,.%'g,t) = ( ! 2 ) 5 ( ! 2 )

Since the method presumes determining a(z3), ko(t), k1(t) with accuracy O(g?), by
inserting (1.8) and (1.7) in (1.1), we obtain two inverse one-dimensional problems of the
successive definition of ky(t) and aj(x3), ki ().

(i) The problem of determining ko(t) and ug(x,t) from the equalities

1 82u0 N [32UQ 32UQ:| 0 <3UQ>

ao 02 | 027 " 922 | " w3 \Oxs
t (1.7)
62u0 82’[L0 0 Oug
+/’€0(t‘7) Haﬁ * (9:6%} " (873” (wr)dr
0
ug |t<0= 0, (1.8)
d / 9
0 |20+ [t -1 20| | = steiere),  (09)
3 3
o r3=+40

Fyy zo[wo](@3,t, v, A)|gs=+0 = Fiy 2, [Uo](t, v, ) =t go(t, v, A), ¢ >0. (1.10)



116 Tomaev, M. R. and Totieva, Zh. D.

(ii) The problem of determining aq(x3), k1(t) and uq(x,t) from the equalities

2
u :L[k 0 <$2al($3)%+ 08u1> 0 <~"32a1(5’33)%>

o2 0 Oy Ox 0 Oz Oz
(32u1 82u1 82“0
+[ 0z? * Ox3 } + 2201(23) 0z? } (1.11)
t
8211,0 32UQ 0 3UQ
k gt A Al d
+/l“1 1(7) [ao[am% + 335%} + a3 <aoax3>}($,7) T,
0
u1)i<o =0, (1.12)
t
L[ko,x2a1(+0)a + Oau ] + apxy /k: (t — T)auo (x,7)dr =0, (1.13)
o3 Oxs 0x3 _
0 z3=40
Foy zolta] (@3, 8,0, ) |gg=t0 = Foy 2o [U1](t, v, X) =2 a1 (t, v, A), > 0. (1.14)

2. The Problem of Determining ko(t) and ug(z,t)

Introduce the variable z by the formula

z = \Q/U—Z_O, co = +/ap.
Let
v(z,t, v, A) i= Fy p,[u0](coz, t, v, ),
t
w(z, t,v, ) == |:v(z,t,1/, A) +/k:0(t —1)v(z, T, v, ) d’T:| exp (—ko(0)t/2) .
0
Then

v(z,t,v,A) = exp (ko(0)t/2)w(z, t,v, X) + /ro(t —7)exp (ko(0)7/2)w(z,7,v,\) dr, (2.1)
0

¢
ro(t) = —ko(t) — /kzo(t — T)ro(T) dT. (2.2)
0
We obtain the following equations for the functions w(z,¢,v, A) and ro(t):
0? 0? /
B—tg) = 8—;} + H(v,\)w — /h(t —1w(z, T,v,\)dr, z>0,teR, (2.3)
0
w0 = 0, (2.4)
ow 1 1
— =—— (0@t -2 S(t 2.
5= (F0 = grom). (2.5
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t
wlemso = ot 0) + [ Folt = Tigo(rv,N)dr, (2.6)
0

Hw,\) = -0+ )\2)03 + TSZ(IO) —76(0),

h(t) :==rj(t)exp (ro(0)t/2), go(t, v, A) := Fyy 5 [g0](t, v, A) exp(ro(0)/2),

ko (t) := ko(t) exp (ro(0)t/2)

Here, for example, r(, rj mean the operations of one-time and double differentiation. The
derivative of the transformation parameter will be denoted, for example, g, (¢, v, A).

We used the equality ko(0) = —79(0) in (2.5) which results from (2.2).

By the theory of hyperbolic equations, the function w(z,t,v, ), as a solution to (2.3)—
(2.5), possesses the property w = 0, t < z, z > 0, and has the following structure in the
neighbourhood of the characteristic line t = z:

w(z, t,v,\) = %5@ —z)+w(z, t,v,\)0(t — z), (2.7)

where w(z,t,v, A) is a regular function. Then

- 1 . .
gO(t’ v, >‘) = aé(t) + gO(t’ v, A)a(t)’ gO(ta v, )‘) = gOO(t’ v, >‘) eXp(TO(O)t/Q)?
here goo(t,v, ) is the regular part of go(t, v, ).
Inserting (2.7) in (2.3)—(2.6) and using the method of separation of singularities, we find
that w(z,t, v, \) satisfies the following equations for ¢t > z > 0 (w = w for t > 2):

t
0w *w
W_ﬁ_F (V)\)w——ht—z /ht—T (z,7,v,A\)dT, (2.8)
1
Wt=z10 = —5(7“0(0) — H(v,\)z) = B(z,1,\), (2.9)
dw =0, (2.10)
0z z=+0
t
W=10 = go(t, v, A) +/0t—7'go7'y)\)d7'—|——kzo() (2.11)
0

Thus, the inverse problem of determining ko(t) and ug(z,t) from (1.7)—(1.10) reduces to
the problem of finding Eo(t) and w(z,t,v,A) from (2.8)—(2.11).
Next we will find unknown quantities r4(0), r{(0).
We will require continuity of functions w(z,t,v,\), (%—g) (z,t,v,\) for z = t = 0 and
from (2.9), (2.11) we find:
T‘Q(O) = 260?]\0(0, v, )\), (212)

76(0) = —q(0) + (* + X3 — G2 (0, v, \) — 2¢0G0(0, v, \). (2.13)
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For the last equalities, we used the relations

r'(t — 7)k(7)dr,

2
—
~
N~—
I
|
%\
—~
~
SN—
|
<
—
)
SN—
w
—
~
N~—
|
o\“

~ 7'2
K'(0) = —/(0) +72(0), k'(0) = # —77(0).

Next, note the r(0), /(0) are already known. The following equalities v, A have fixed
nonzero reals.

Lemma 2.1. Suppose that goo(t,v,\) € C3[0,T], for a non-zero real v,\, where
T > 0 is fixed. Then the inverse problem (2.8)-(2.11) for (z,t) € Dr, Dr =
{(z,t)] 0 <2<t <T -2} is equivalent to the problem of finding a vector-function

w(z, v, \), (2 )(AtJ/A)<aﬂ>(zj#@A%h@%fﬂ@%ib@%%é@%%g@%iﬂ%ﬂ from the
following non-linear system of integral equations:

¢
ow

Wzt ) = 8 n N + [ G dr (2.14)

z

ow 1 1, ~
ot (Z,t,l/ )‘) 4COH(V, >‘) + 5 (g(](t -z, >‘) - TO(O)QO(t -z, )‘))

1 1
——h(t—z)z—i——kot—z t3 Ot—z—Tgo(T,u,)\)dT

200

o\

+= / [H(u,)\)w({,t—i-z — &) — cioh(t—i-z —2€)

t+z—2¢

— / h(T)w(f,t—l—z—g—T,l/,)\)dT]df.
0

t—=z

—1/ Hy, w(§t —2+&§v,A) = [ Mr)w(€ t—2z+§—7,v,\)dr| d§
2 (2.15)
0 0
=: G1 [w,h,k\o,i{i\é],
0w 0 ~ =,
S () = =G [w,h, ko,ko], (2.16)
- 1 t
h(t) = —2c¢ [ Ol(t U, A) — TO(O)%(t,V, A) 4+ ro190(t, v, A) — §H(I/, A) B <§,V, )\>}
t t
—QEg(t) — 2¢p //k\:g(t —7)go(T, v, \) dT — co/h(T)ﬁ <t ; T, v, A) dr
0 0
: o (2.17)
2 [ |HEN G- N = [ 00—~ Nar| dg
0 0
. 8_71} N/
—. G2|:at7h7k0:|7
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K (t) = (GQ[%Z: h, Kl D : (2.18)
ko(t) = —ro(0) + rort + / (t — )k (7) dr, (2.19)

0
Ko(t) = ro1 + [ ki(7)dr, (2.20)

/

T(t) = —h(t) + rooko(t) — / h(t — 7Yko(7) dr. (2.21)

0
Ry (2) = ~I/(0) + rookp(0) ~ h(O)Ra(t) — [ (e = m)ko(r)d, (2.22)

0
where ) )
TO(O) TO(O) /

Too — 4 — 7“6(0), Tol — B — 7“0(0).

<1 Note that the following are valid:
Fw _Pw_(0_9N(9 0\, (0 0\(0 0\
oz 922 \ot 0z)\ot 0z S \ot  oz)\ot 0z

Taking this into account, integrate (2.8) along the corresponding characteristics of differential
operators of the first order for (z,t) € Dp. Integrate along the characteristic of the operator
% — % from (z,t) to ((z+1)/2, (z+ t)/2) in the plane of variables (¢, 7). Using the equality
(% + %) w((z+1)/2, (z4+1t)/2,v,\) = 5—H(v,\), resulting from (2.9) after differentiation
with respect to z, we have

0 0 1
<a + &) ZU(Z,t,I/, )\) = Q—COH(I/, )\)
(z+t)/2

+ / |:H(V,)\)W(§,t+z_§7’/7)‘) - %h(t+z—2§) (2.23)
t+2z—2¢

- / h(r)w(&,t + 2z —& — 7,0, \)dT| dE.

Integrate along the characteristic of 2 5+ a from (0, t — z) to (z,t). Using (2.10), (2.11),
we get

0 0 —~
(a - &) ’U)(Z,t, v, >‘) = /g\/O(t — &V, >‘) - TO(O)QO(t — &V, >‘)
t—=z

——h(t—z)z—l——ko (t—=2) +/ ky(t — 2z — 7)go(T, v, \) dT
0

co (2.24)

z t—=z

+ [ et -2+ 6 -

0

h(r)w(&,t —z+ & —1,v,\)dr| dE.

o\
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From (2.23) and (2.24) we can easily obtain (2.15). Putting z = 0 in (2.23), and using (2.10),
(2.11), we obtain

t
(6.1 ) — ro(0)5o(t, 1, A) + —ko +/6t—79077/>\)d

0
t/2 -
=g+ [ | et =€ = Lo =20 = [ iote - - rrar|de

Differentiate this equality by ¢ and arrive at (2.17) after simple computations.

The remaining equations of the system are obvious and are used to close the system
of integral equations. The h(0), E”(O) are knowns if we solve for t = 0 a system of two
equations (2.21) and (2.17). The Lemma 2.1 is proven. >

Theorem 2.1. Suppose that the conditions of Lemma 2.1 hold. Then there is a unique
solution ko(t) € C3[0,T] to (1.7)~(1.10) for every fixed T > 0.

Let T'(Kp) be the set of functions ko(t) € C®[0,T], satisfying ko () lcsjo,m < Ko for
t € [0,T] with a positive constant Kj.

Theorem 2.2. Let kél)(t),k((]2) (t) € I'(Ko) be solutions to (1.7)—(1.10) with the set of

data { 9(()]0) (t,v, )\)} for j = 1,2 respectively. Then there exists a positive constant C' =

C (Ko, ho(v,N),co,T), ho(v,\) = maX{HgéQ (t,v, )‘)HCB'[O,T]’ j =1, 2}, such that the stability

estimate holds:
Hk(()l) _ k(()Q)‘ (2)

Hgoo ~ 900 ‘ (2.25)

3o, T] c30,7]

<1 PROOF OF THEOREM 2.1. The main idea of the proof consists in application of
the Contraction Mapping Principle to the non-linear system of the integral Volterra equations
of the second kind (2.14)—(2.22). Write the system of equations as an operator equation

¢ = Ap, (2.26)
with ¢ = [p;], 7 =1,2,...,9:
o1(z,t, v, N) == w(z, t,v, N),

ow 1 1~
wa(z,t, v, \) == E(Z’t’ v,\) + ﬂh(t —2)z — Q—COkJO(t —2z),
Cotirn) = 20 )+ = ) Bt — )+ Sh(t — )/Zﬂ(f V) de
w3 =z, L, V, - atQ Z,1,V, 200 Z)z 200(0) 0 < 2 z ) )

0
palt) = h(t) +2kG (1), () = B () + 2Kk (£) + coh()B(0, v),

po(t) == ko(t), pr(t) :=ko(t), s(t) == K(8) + A(t) = rooko(t),
o (t) = kg (1) + 1 (£) = rooko(t) + A(0)Ro (0).
The operator A is determined on the set of vector-functions ¢ € C[Dr] and, by (2.14)-
(2.22), has the form A = (A1, As,...,Ag):
t

1 1
A1<P:<P01+/ [@(277, v, )\)_Q_COZ (208(T — 2) — pa(T — 2) + 210006 (T — Z))JFQ—COW(T z)| dr,

z
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t—z

_ 1]
A = po2 + 907(75—2—7)90(T,V,>\)d7+5/[H(V,>\)801(§,t—2+5,%>\)

0 0
z

(208(r) — pa(r) + 2roogs())pr (6,6 — 2 + € — 7, u)dT] e

1
2

+
N | —
N\_,w‘i:
O\T

[H(V, Ne1(&t+2—¢&v) — 0—10(2g08(t +2—28) — 4t + 2 — 28) + 2rgope(t + 2z — 28))

t+2z—2¢
[ o) =)+ gl 2 - €~ o N | de

[e=]

—_

t—z
Ayp =g+ 5 [ (oalt =2 =) = pslt =2 = 1) = roogu(t = 2 = T)Go(r s ) dr
0

z

+3 [ |G- e

0

— [ @ostr) = u(r) + 2rooeulr) €t — 2+ €| e
0

w‘+
n

1

0 1,
+§/[H(V,)\)a—ltu(§,t—z+§,u,)\)—%h(t—i-z—%)

z

—(2p8(t + 2 — 28) — pa(t + 2z — 28) + 21006 (t + 2 — 28))B(E, V)
t+2—2¢

~ [ @) = ) + 20 G €ty = € = mo N e

0
t
Awp = poa = 200 [ Rt = 7)o(r,v)dr
0
t t/2
t—T ow
CO/ 2@8 +27”00<P6( ))51; <Taya)‘> dT+2CO/|:H(V7)‘)E(§7t_é.ay7)‘)
0 0

t—2¢
= [ @onr) = o)+ 2run(r) G et = € = m Ny e
0

t
A59028005—Co/ oa(t — 1) — @s(t — 1) — roowe(t — 7)) go(7, v, A) dT

@)

0
t
t—T1
_50/ 2808 +2T00906( )5 <Taya)‘> dr
0
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2
reo [ |HONGE 60 =€) = et - 20) - nle — 20)

2

2ot~ 20) 2 (€,€,) - / (25(r) — a(r) + 2roos(r) L2 (€.t — € — .0)dr | de,

ot?

t
A69029006+/f—7' (pa(t —7) — ps(t —7) — roowps(t — 7)) dr,
0
t
A7<P:<P07+/(<P4(’5—T)—<P8(t—7)—Too%’(t—T)) dr,
0
t
Agp = pog — /2s08 T) + 2ro06(7)) we(T) d,
0

t
Agp = pog — /h/(t —7)pe(T)drT,
0
with o = [¢o1, Y02, - - -, Po9] :
@Ol(zaya )‘) = /8(Z7V7 )\)7

1 ~
wo2(z,t, v, A) == 5(%@ — 2,1, \) —10(0)go (t — 2,1, \)) + EH(I/ S A)

Hv0) 5 (%tu A) —ih<0>] |

- 1 t
woa(t, v, X) == —2co |Go (t, v, \) — 10(0)gh(t, v, A) + 10190 (t, v, A) — §H (v, \) <§,u, A)} ,

w05 (t, v, A) i= phu(t, v, \)
wos(t) := —7r(0) +ro1t, wor(t) := o1, os(t) := 0, woo(t) := 0.
In (2.26) we have
h(t) = 2ps(t) — pa(t) + 2roows(t), ' (t) = 2p9(t) + 2ro0p7(t) — ¢5(t)
+co (2¢s(t) — @a(t)) + 2 (roocoB(0, ) — 1(0)) w6 (1), (2.27)
kG (t) = @a(t) = @s(t) = rooes 1),

1
wo3(z,t, v, A) i= 5(%’(1?—% v, \)—10(0)g5(t—y, v, )\)) +=

ow

E(Zaf, v A) = @alz, 1, A) — o (208t — 2) — a(t — 2)

2¢q

1
+2T00(p6(t — Z)) + Z(W(t — Z)

z

D b0 N) = ety A) — B (= 2) + Rt — ) — (e — ) [ b6 0
52 (1Y) v3(z,t, v, 5 z 50 0 ) = 5 z U, ,
0

kY (8) = po(t) — B () — roopr () + h(0)ps(t).
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In the last two equalities, instead of h(t), h'(t), ?{:\6’(25) on the right-hand side, we take their
expressions via the components of ¢ (2.26).

Introduce the Banach space of continuous functions C,, generated by the family of
weighted norms

l¢lls = max < sup |cpi(z,t, v, Ne %, i=1,2,3, sup |<pj(t)e*"t|, ji=4,...,9,0>0.
(z,t)€EDp te[0,7

For o = 0, this space is the space of continuous functions with the usual norm ||¢[|. By the
inequality
e el < llelle < llel (2.28)

the norms ||¢||, and ||| are equivalent for every fixed T € (0,00). The positive real o will
be chosen later. Let Q, (w0, [[©oll) =: {¢| [l — volle < ||@oll} be the ball of radius ||¢g|| with
center at g from some weighted space C, (0 > 0). For ¢ € Q,(¢o,|loll), the following
estimate holds: [|llo < [[9o]ls + 0]l < 2[00l

Let p(z,t,v,A) € Qo(po, ||¢o]|)- Next, we will show that for an appropriate choice of o > 0
the operator A takes (), into Q. Give, as an example, the estimating technique for the second
nonlinear equation of (2.26); the estimates are obtained similarly for other equations [18|. For
(z,t) € D, we have

[A2¢ — po2lle = sup  |(Azp — @p2)e |
(ZJ)EDT

z

= sup or(t — 2z —1)go(T, v, )\)e_"(t_z_T)e_U(z‘H) dr

(th)eDT

DO | —
O\T

Z -

= / H(p, Ngr(€t = 2 &, N)e 70518 emolen0)

0 L

t_
/ (208(T) — a(7) + 2ro06(T))e T p1 (&t — 2 4+ € — T,p, N)e TUETFHETT) == g 1| e
0

t+z
2
+5 [ B0+ 2 = et Oeee

—a(2ps(t + 2z — 28) — pa(t + 2 — 28) + 2rgope(t + 2z — 2€))e —o(t+2-26) ,—0(2~2)
t+z—2¢
a / (208(T) — a(T) + 2r006(T))e T p1 (&, t 4+ 2 — £ — 7,1, N)e TUFFETT =0 (672) g | e

[e=]

1 1
< §G||807Ha;(€_az —e )

1

1
H o
+5 ol o

e 7 1 1 —0
L= ) 4 L @lgells + sl + 2rleallo) o (1 - )T
1
Lot (1
g
1
2

A 1 o —ot
2 >+2_c0(2H<p6Ha+H<p3Ha+27"00H‘P4”U)E(e e

t—2

1 _
+5 2leslls + llesllo + 2roollealls) llerllo— (1 —e7=7) T
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1 A 1 1
< 2ull [5G+ Ho+ (3-+ 2rwl) (5 + Tlol )| 2 = 2lallea (o, G Ho. 1o T ol 3.

HO = maXZE[QT/Q} ’H(V7 )‘)’7 G = maxte[ovT} ‘/g\o(t, v, )\)‘ :
Thus, for all equations of (2.26), we have

1 .
HAJQD_QDOJHU<2HSDOHX]35 32152"",9

(x; are the constants depending on the same values as x2).

Choosing o > ¢ := 2maxi<j<o {X;}, we find, that A takes the ball Qs (¢o, |/¢o|) into
Qo (po; lleall)-

Let o', »? be two arbitrary elements from Q, (o, |[0]|). Using the auxiliary inequalities
of the form

lotoj — il e

< oillog — @il e + |6f] i — @i e <Alleoll [|0! = €21,

we have HAgpl — AgpQHJ < Hgol — gozHo , where oqq is determined the same way as og (the
only difference between oo and oy is that the constant ||@g|| in the coefficients x; is doubled
18))

If o is chosen from the condition o > o¢* := max{op,000}, then the operator A
is contracting on Q,(®o,|lvoll). Then, by the Banach Contraction Mapping Principle,
equation (2.26) has a unique solution in Q4 (o, [|¢ol|) for any fixed T > 0.

Since ko(t) := exp(ro(0)t/2)ko(t), by the obtained ko(t) the function k() is found by the
formula R

ko(t) = exp [ — To(O)t/Q] /{?Q(t). (2.29)
Theorem 2.1 is proven. >

<1 PROOF OF THEOREM 2.2. Since the conditions of Theorem 2.1 are valid, a solution to
(2.26) belongs to Qs (w0, |lvoll) and||vills < 2||¢oll, i =1,2,...,9. Thus,

max |ko()] < 2[|ol| exp (|ro(0)|T) =: K.
t€[0,T)

)

Let ¢\9), j = 1,2 be the vector-functions that solve (2.26) with the set of data {ggo(t, v, )\)}
respectively. From the arguments in the proof of Theorem 2.1, we obtain the estimate for

oc>=o*
M _ 0 — o) o [0 — o
Htp o, s HgOO 900 || csory T 5 19T, (2:30)
where C] depends on the same arguments as C' in Theorem 2.2. The estimate
20 _ 70 ¢ 90 o o
Hko B ko H S o—o* Joo- ~ oo ‘ 310,71

follows from (2.28) and (2.30). Then, considering equation (2.29) for {kél),?c\(g?)}, {kél),g((f)}
and using (2.29), we obtain (2.25).

3. The Problem of Determining a;(x3), k1(t) and uy(x,t)

Next we will use the bilinear integral operator

Lko(t),u(z,t)] = u(z,t) + / ko(t — T)u(z, ) dT.
0
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Pass from the functions wi(z,t) and wug(x,t) to the Fourier images u;(xs3,t,v,A) =
Fy\ zoluj](x3,t,v,)), 5 = 0,1. Then inverse problem (1.11)-(1.14) can be rewritten in terms
of 71 as follows:

2
I [ko,ao% B

o AQ)aOal}
3

. 0 aﬁ/0)\ . ~ N2 2 ~
+L [k:o,za—xg <a1(m3)8—x3> —iAa (z3)a9 — z()\ +v )al(xg)u())\ (3.1)
¢ 02
—|—i/a0k1 (t—7) [ ug” — (21/220 + ()\2 + 1/2)&01,) (z3,7,v,\)dT,
Oxs
0
uy [t<0= 0, (3.2)
¢
- Diie
ko,Zal(—i-O)a 0A + ao% — iao/kl(t — T) il (.%'3,7', v, )\)dT =0, (3.3)
O3 O3 Ox3
0 r3=+0
1(0,t,v,\) = Fy, o, [U1](t, v, A) == g1(t, v, A), t>0 (3.4)

(in (3.1) and (3.3) the subscript v (\) denotes differentiation with respect to v (X)). Let

Vz, t,v,\) = L[ko,zll(gb_l(z),t, v, \)] exp (r0(0)t/2).

Then (3.1)-(3.4) take the following forms for z > 0, t € R :

t

o’V 9’V .

i) + Hv,\)V — /h(t — 1)V (z, 7,0, \)dT — iAey(2)w
0

ow), i 9wy
9. T2t (39)

—i (A2 + %) e1(2)wy + 0_226/1(2)
0
t
. vy 2 2y .2 2
+iexp(ro(0)t/2) | ki(t — 1) — (A 4+ v¥)cguy — 2vchu(z, T,v) | dr,

072
0
V |t<0= 0, (3.6)
t
<1a1(+0)% + %—Z + i exp(ro(0)t/2) /k1 (t—71) a”” T> =0, (3.7)
0 z=+0
V |s=40= L [anﬁl (t,v, )\)} ) (3.8)

where
c1(z) == a1(co2),

g1(t,v, ) = g1(t, v, ) exp(ro(0)t/2).
By (2.1) and (2.7)

v = exp(ko(0)t/2) clo (t—2z)+w(z,t,v,\)0(t — z)
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t

—|—/r0(t—7') exp(ko(0)7/2) [cl ot —2z) +w(z, 7,1, \N)0(T — 2)| dr
9 0

(henceforth we omit the tilde over w),

t

v, = exp(ko(0)t/2) [wy (z,t, v, \)0(t — 2)] + /ro(t — 1wy (z,7,v, \) exp(ko(0)7/2) dr

z

Note that the initial-boundary value problem obtained by differentiation of (2.8)—(2.11)

with respect to v is valid for w,:

t
2 2
o0“w,  0“w,

=P Ay + Hy (v, Aw — / h(t — )y (2, 7,0, \)] dr,

ot2 022
wu’t:z’-f—o - /811(27 v, )‘)7
ow,

0z

=0,
z=+0

wu|z:+0 =L {Eo,fq\()u(f, v, A)] .

Summarizing the above, we have

= /El(t—T) [%(2’,7’,%)\) —i—/?o(T— )aa—(z n,v, )\)dn] dr,

z

where ki (t) 1= k1 (t) exp(ro(0)t/2), To(t) := ro(t) exp(ro(0)t/2),

d’T

t T
~ 0w, N 0w,
:/kl(t—T)[8Z2 +/r0(7'— )82(z77,y)\)d77]d

exp (ro(0)t/2) /kl(t —7)(q(z) = (\* +v*) ) vy dr
0

= //k\q(t —7)(q(2) = (A\* + %)) [wy(z,T, v, \)

T

z

+/7/:0(T _U)wu(zﬂ% v, )\)dU] dT’

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
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t
exp(rp(0)t/2) /kzl (t — 7)2vciv(z, 7,0, \) dT
0

t

= 2wl [74\1 (t—2z2)+ //k\:l(t —7)ro(T — 2)dT
t

—|—/7<:\1 t—7‘< (z,T,v,\) + / o(T — n)w(z, n,uA)dn) dT]. (3.16)

Observing (3.11) and (3.13)—(3.16), we can rewrite (3.5)—(3.8) for z > 0, ¢t € R as follows:

t

2 2 R
%T‘Q/ = ?97‘2/ + H(v,\)V — /h(t — 1)V (z, 7, v, \)dr + viki(t — z)
1
—iAei(z) <—5(t —z) +wl(t — z)) —i(A% 4+ 1%)er(2)wy (3.17)
€o
t
) ({911))\ 7 82?1})\ ~
+%C,1(Z)§ + %Cl(Z)W + /p(%ﬂ v, )‘)kl(t - T) dT’
%4 |t<OE 0, (318)
ov
i =0 3.19
0z lz=40 (3.19)
V |i=.= 0, (3.20)
V |.=0=L {7{\07/9\1(t7 v, )\)} ) (3.21)
where
~ . o . 3271} 2 9
¢ =2icy, p(z,t,v,\)=cro(t—z)—ilgy |To, = 5.2 ()\ +v )cow,, — 2vcow

(the difference between Lg in the definition of p(z,7,v,A) and L is that the subscript of the
integral in the operator is changed for z).

Thus, the inverse problem of determining a;(z3), k1(t) from (1.13)—(1.16) reduces to the
problem of determining ¢1(2), k1(t) from (3.17)(3.21).

By means of the d’Alembert formula, we obtain

VietN) = 5 ( [Fordit = 2,0 0] + L [Ro it 4+ 2,00 )

52 z t+2—§
A 1 ~
[ e+ {Vékl(T )+ H@ V(60 )
200 2 2 O/tlg
2 (3.22)
A ON(E 1) + 5 B2 (E T
0

T

—/ [h(T — V(€ n, v, \) + ki (1 — n)p(€,n, v, A)] dn} drd§ == F [V, c1, 6’1,@1} :
3
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where
0%wy,

—(57 T, )

Passing to the limit in (3.22) as t — z + 0 with V|;—, = 0, we derive

N(§7Taya)\) ::Z.|:)\’w—|—()\2—|—y2)w)\_ LQ
0]

1 [f 22,0 0)] =2 [ er(€)ae
€o
0
z 2z—¢ .
] {uckl O+ HENV(E T ~a@NET 1Y) + 5AO%2 (329
0
0 ¢

- / [h(T — V(& v, A) + ki (T — n)p(&, n, v, A)} dn} drde.
¢

From (3.23) it follows that g;(0,2,A) = 0. Replacing 2z by t and differentiating (3.23) with
respect to t, we get

t/2
—L [Eo’b\/l(taya)‘)} = _2Z_>\Cl 75/2 /{ Ckl t_2£) +H(V )‘) (5? f,y >‘)
0 0
' 0
—e(ONEE = EvN) + SAOF2 6t~ EmA) (3:24)
0

t—2¢
- / [h(T)V(& t—&—nu,A) + ki (Dp(&,t — € — T, A)] dT} de.
0

It’s obviously that ¢;(0) = 25?@&(0,1/, A). Differentiating (3.24) with respect to t, then
substituting the values A1, Ao sequentially and making up the difference of the equalities for
a fixed v, we can obtain the equation for ¢} (z)(z = t/2) :

cd(z) = ﬁA)‘ {L [/k\:o,ﬁ'u(%,u, )\)],} - 2A)‘{N]\(ﬂj)’ = )\)}101(2)
Na(z,1,0)

1 ov ON
e /AA{H(V,)\) (61— v ) — 1§ 5 (6~ 6w )
0

(3.25)
+ 2O €T
22—2¢
_ / [h( )8V(§,22 -\ + (T )ap(g 2 — f—T,V,)\)}dT}df,
0

where Ay{-} is the difference of the values {-} for A\ = A; and A = Ag. In particular,
AN{N(z,z,v,\)} :== N(z,2,v,\1)—N(z,z,v, A2). Next, by A, {-} we will denote the difference
of values for vy, vs.
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Note that if Ay # A9, then we have
M(Z) = i()\l - )\2) [1 + —:| #0.

Differentiating equation (3.24) by ¢ (after replacing the variable in the first integral

t—2¢ =), and then using the parameters v1,v2 (v1 # v2), we can obtain the equation
for k1 (t) (t/2 = 2):

Ta(t) = —ﬁm L [Ro.3h (0. )\)”
p2AE I ) - s | Ay{ (et =)
N(z,v,\) ’ (3.26)
@2 - ) + (O T )
oy . p
- / [h(T)E(g,t — - N+ RN 6t Ty, )\)}dT} de.
0

Next, the obvious equalities are used:

z

e1(2) = e1(0) + / &\ (€) de, (3.27)

0

ov 0 ;o
pr —(z,t,v,\) = aF [V, cl,cl,kl} . (3.28)

Equations (3.22), (3.25)—(3.28) are equivalent to equalities (3.17)—(3.20) and form a closed
linear system of Volterra integral equations of the second kind in the domain D with respect
to V(z,t,v, ), Z(2,t,1, ), c1(2), c;(2).

Next, we need that the functions N(z,t,v,\),p(z,t,v,\) € C*[Dr]. Therefore, it must be
shown that wy,w, € C3[Dr].

Indeed, using the d’Alembert formula for the problem (3.13), (3.15), (3.16) we obtain
a linear integral equation of the Voltaire type with a continuous free term and a continuous
kernel in the domain Dp:

v = % (L [Eo,ﬁo,,(t — 2 V)] + L [Eo,%u(t + Z,V)D
5 thz—€ .
+% / / {H(E, v)w, + Hy (&, v)w(&,7,v) — /h(T —n)wy (&, . V))dn}def. (3.29)
0 t—2te .

It follows from the theory of integral equations that equation (3.29) has a unique continuous
solution in Dp. The smoothness of the solution is determined by differentiating equation
(3.29) a sufficient number of times. It is easily checked that the right part of the differentiated
equation will be continuous, and therefore the left part will also be continuous [30]. Thus,
w, € C 3 [DT]
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Similarly, it can be proved that wy € C3[Dr].

The following theorems of unique global solvability and stability of the inverse problem of
determining aq(y), k1(t) are the main results of this section.

Theorem 3.1. Under the conditions of Theorem 2.1, let gy(t,v,\) € C?[0,T)] for fixed
non-zero (v, \), and g1(0,v,\) = 0, ¢1(0,v,\) = %. Then there is a unique solution of
inverse problem (1.11)~(1.14) ¢1(z) € C[0,T/2], k1(t) € C[0,T) for every fixed T > 0.

Theorem 3.2. Let cgl)(z),c?)(z) e Co,T/2), k%l)(t),kg) (t) € C[0,T] be solutions to
(1.11)~(1.14) with

{ggj)(t, v, \), k:éj)(t), ﬁéj)(.%'g, t, v, )\)}

for j = 1,2 respectively. Since the conditions of Theorem 2.2 are valid, there exists a positive
number C = C(C, hy(v, \)),

N(j)(z,t, v, A

Moy 129 ot v Ml a0 5= 1,2},

P R { G
such that the stability estimate holds:
Hcgl) _CgQ)HCl[O,T/Q] + Hkgl) _k?)HC[QT} S c Hggl) _§§2)HCQ[O,T]+ Hk(()l) _kSQ)HC[o,T]]' (3.31)

< PROOF OF THEOREM 3.1. System (3.22), (3.25)—(3.28) is a closed system of the linear
integral Volterra equations of the second kind with continuous free terms and kernels in Drp.
The idea of proving existence of the unique solution to the given system consists in application
of the generalized contraction mapping principle. Write the system (3.22), (3.25)—(3.28) as
the operator equation

Y = By, (3.32)

/

2 )¢
L ¢1
7<:\1(2’2) _NI/('Z, v, )\)01(2), Cl(’z),
——
Y3 o
ov 1 t+ 2z t—z VA~ 5
E(Z’tﬂ/’)\)—i_Q_Co [c1< 5 >—cl< 5 )] +§k1(t—z)cz

Then V(z,t,v,\), ¢;(2), E1(2z), %—‘{(z,t, v,\) can be defined through the components of :
ﬁ

Vit A) = 1 (6,7, 0) + % / a(s) ds,
T—¢

2
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C/I(Z) = T;Z)2(Z’ v, >‘) - NA('Z’ v, >\)T/)4(Z),
74\1(22") = ¢3(Z7V7 )‘) + NV(Zvyv A)T/J4(2)

O (et vX) = (2t X) [W <t+z> (

L [¢3((t —2)/2,1,A) + Ny(2/2,v, A)w4(z/2)}

The operator B = (B1, By, B3, By, Bs) is determined on the ¢ € C(Dr) for fixed v, .
Similarly, as it was done in |31], it can be shown that some degree of n (n is natural number)
of the linear map B1) is compression. Let

_ ot N, =1,....5
o = max{ max fos(e.t A, }

Let M, 2 be continuous vector-functions in Dy satisfying a linear system of integral
equations (3.32). Let

(Zt)_{(g’ ) 5 2, t_z+£ T<t+z_£}’

X(z,t,8) ={1: (7)€ A(z,t)}.

Then, by virtue of the linearity of (3.32) for (z,t) € Dy according to the equations (3.22),
(3.25)—(3.28) we have (the parameters v, A will be omitted from the argument list)

‘szp@) - sz/;(?)‘ (2,8) < pyz Hzp@) - ¢(2)H . j=1,...5,

where p1; are constants depending on the parameters of C (Theorem 3.2).
If M := max{u1, o, 13, pia, i15 }, then we have

Bjyp® — Bjp?| (2,) < Mz

max
1<j<5

pO W)H . (2,t) € Dy

Next, the following estimate are hold [31]

s 50 - 7] ) € 35 [0 - 0. (o) €
and,
i [ B0 - B Gty < B iZ V-0 eoenn
[ — | < i Lo ot )

For every fixed T" we can choose the number n so large that

Then B"™ is a contraction. By the generalization of the Contraction Mapping Principles the
equation Bty = 1 has one and only one solution belonging to C' (D). This solution can be
found by successive approximations. >
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< PROOF OF THEOREM 3.2. Let 1/19) be a vector of functions which are solutions to (3.32)
with {ggj)(t), k:éj)(t), w(j)(z,t)}, j = 1,2, respectively.
Obviously, the function 1/M(z) can be estimated:

L. 1
M(z)| A= Ao

Further, from the arguments of Theorem 3.1, we obtain

2)

H¢”—@®H<mw+au¢”—w : (3.33)

where

7i=[of? - | w57,

com | o

and po depends on the parameters of C. It follows from equality (3.33) that
oV = | < iy

with 1 = po/(1 — ).
Considering the equation ki(t) = exp[k:o(O)t/Q]El (t) for {k:g)jc\gl)}, {k@,%f)} and
using (3.33), we obtain (3.31). Theorem 3.2 is proven. >
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OBPATHA{ JIBYMEPHA{ KOSOOUIIMEHTHA A 3AZTAHA
JJId ONNPEINEJTEHNA IBYX HEM3BECTHBIX B YPABHEHUU
C TAMSATDBIO 1J1s1 CJTABO TOPU3OHTAJILHO HEOJHOPOJIHOW CPE/IBI
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Awnnoranus. [lpencrasnena nBymepHasi obpaTHas KOI(MDDUIMEHTHAST 33/1a9a ONPEIE/ICHUS IBYX HEU3-
BECTHBIX, KOTODbBIE SIBJISAIOTCA KOI(PMUIMEHTOM H siIPOM HHTErPATBHOTO ONEPATOPa CBEPTKU B YPaBHEHUH
VIPYrOCTU C MaMsIThIO B TPEXMEPHOM MoJympocTpancTBe. KoadduimenT, 3aBucsmmii oT AByX MPOCTpaH-
CTBEHHBIX II€PEMEHHBIX, IPEJCTABIISIET CODONH CKOPOCTH PACIPOCTPAHEHUsI BOJH B CJIa00 TOPU30HTATIHHO-
HEOTHOPOMIHOMN cpefie. ZIpo MHTEerpabHOTO OIepaTopa CBEPTKU 3aBUCUT OT BPEMEHHONM W MPOCTPAHCTBEHHON
nepeMenHoi. [Ipsimasi Hada/bHO-KpaeBasl 3aja4a MpeJCcTaBisier coboil 3aja4dy ompejeaeHust PYHKIUU CMe-
[IIEHNs IPU HYJIEBBIX HAYAJIBHBIX JAHHBIX M I'PaHUYHOE ycjaoBue Heiimana cnenmasbHOro Buma. Vlctounmkom
BO3MYIIEHUSI YIIPYTUX BOJIH SBJISIETCS] TOUEIHBI MTCHOBEHHBIN MCTOYHUK, [IPE/ICTABIIAIONINI cOOOI Tpon3Beie-
Hue jenbra-pyaknui Jlupaka. B kagecTse pomosiHUTEIbHON MHMOpMAaIU 3aaeTcss 06pa3 Pypbe pyHKIMH
CMEIEeHnsT TOYEK CPeJbl Ha TPAHUIE MOJYyIPOCTpaHCTBa. lIpeamosaraercs, YTO MCKOMBIE BEJIMIHHBI 00PAT-
HOI 3371a9m n DYHKINST CMEIIEHIS PA3JIaraloTCs B ACHMITOTHYECKNE PSIAbI IO CTEMEHsIM MAaJIOr0 IapaMeTpa.
B pabore moctpoer Meron HaxoXKaeHUsi KOIMDPUITMEHTA U SIPA, 3aBUCSIIIUX OT JIBYX MEPEMEHHBIX, C TOYHO-
CTBIO 710 TONpaBKu, umeromiei mopsagok O(e?). Tlokazano, 4T0 ObpaTHas 3a/Ja4a SKBHBAJCHTHA 3aMKHYTOM
CHCTEMOI MHTErpAJILHBIX ypaBHeHut Bosibreppa Broporo poza. Jlokazanbsl TeopeMbl T100aIbHON OJHO3HATHOM
Pa3pemMOCTH ¥ YCTOWINBOCTH PeIeHns] 0OpaTHON 3a1a4m.

KurroueBnble ciioBa: obparHas 3ajad4a, gesbra-QyHKnus, npeobpasoBanne Pypoe, s151po, KoapDUIMeHT,
YCTONYUBOCTbD.
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