ISSN печатной версии 1683-3414   •   ISSN он-лайн версии 1814-0807
    Войти
 

Контакты

Адрес: Россия, 362025, Владикавказ,
ул. Ватутина, 53
Тел.: (8672)23-00-54
E-mail: rio@smath.ru

 

 

 

Яндекс.Метрика

Уважаемые авторы, просим обратить внимание!
Подача статьи осуществляется только через личный кабинет электронной редакции.
DOI: 10.46698/y7151-5493-5096-h

К теории модельных трехмерных интегральных уравнений типа Вольтерра с граничными особыми, слабо-особыми и сильно особыми ядрами

Раджабова Л. Н. , Хушвахтзода М. Б.
Владикавказский математический журнал. 2024. Том 26. Выпуск 2.С.103-112.
Аннотация:
В настоящей работе изучается трехмерное модельное интегральное уравнение типа Вольтерра с граничными слабо-особыми, особыми и сильно особыми ядрами в области \(\Omega=\{(x,y,z):\, 0 \leq a < x < \infty,\ 0 \leq b < y < b_{0},\ 0\leq c < z < c_{0}\}\), которую назовем прямоугольной трубой. В случае, когда коэффициенты уравнения связаны между собой, решение уравнения ищется в классе непрерывных функций в \(\Omega\), обращающихся в нуль с определенным асимптотическим поведением на особых областях. Доказано,что при выполнении определенных условий, задача о нахождении решения трехмерного интегрального уравнения типа Вольтерра с граничными слабо-особыми, особыми и сильно особыми ядрами сводится к решению одномерных интегральных уравнений типа Вольтерра с особыми граничными ядрами. Отметим, что при решении данного интегрального уравнения используются связи данных уравнений с дифференциальными уравнениями первого порядка со слабо-сингулярными, сингулярными и сильно-сингулярными коэффициентами. Устанавливается, что от полученного решения и правой части нет необходимости требовать дифференцируемости, достаточно в правой части трехмерного интегрального уравнения с граничными особыми, слабо-особыми и сильно-особыми ядрами требовать непрерывности и обращения в нуль с определенной асимптотикой на особых областях. Доказано, что в зависимости от знака коэффициентов уравнения, явное решение модельного трехмерного интегрального уравнения типа Вольтерра с особыми ядрами может содержать от одного до трех произвольных функций двух переменных, также определен случай, когда решение интегрального уравнения единственно.
Ключевые слова: модельное уравнение, трехмерное интегральное уравнение, граничные особые ядра, произвольная функция
Язык статьи: Русский Загрузить полный текст  
Образец цитирования: Раджабова Л. Н., Хушвахтзода М. Б. К теории модельных трехмерных интегральных уравнений типа Вольтерра с граничными особыми, слабо-особыми и сильно особыми ядрами // Владикавк. мат. журн. 2024. Т. 26, вып. 2. С.103-112. DOI 10.46698/y7151-5493-5096-h
+ Список литературы


← Содержание выпуска
 
  | Главная | Редколлегия | Публикационная этика | Рецензирование | Свежий номер | Архив | Правила для авторов | Работа с электронной редакцией | Подать статью |  
© 1999-2024 Южный математический институт