Уважаемые авторы, просим обратить внимание!
Подача статьи осуществляется только через личный кабинет электронной редакции.
DOI: 10.46698/e7124-3874-1146-k
Обратная двумерная коэффициентная задача для определения двух неизвестных в уравнении с памятью для слабо горизонтально неоднородной среды
Томаев М. Р. , Тотиева Ж. Д.
Владикавказский математический журнал. 2024. Том 26. Выпуск 3.С.112-134.
Аннотация: Представлена двумерная обратная коэффициентная задача определения двух неизвестных, которые являются коэффициентом и ядром интегрального оператора свертки в уравнении упругости с памятью в трехмерном полупространстве. Коэффициент, зависящий от двух пространственных переменных, представляет собой скорость распространения волн в слабо горизонтально-неоднородной среде. Ядро интегрального оператора свертки зависит от временной и пространственной переменной. Прямая начально-краевая задача представляет собой задачу определения функции смещения при нулевых начальных данных и граничное условие Неймана специального вида. Источником возмущения упругих волн является точечный мгновенный источник, представляющий собой произведение дельта-функций Дирака. В качестве дополнительной информации задаетcя образ Фурье функции смещения точек среды на границе полупространства. Предполагается, что искомые величины обратной задачи и функция смещения разлагаются в аcимптотичеcкие ряды по степеням малого параметра. В работе построен метод нахождения коэффициента и ядра, зависящих от двух переменных, c точностью до поправки, имеющей порядок \(O(\varepsilon^2)\). Показано, что обратная задача эквивалентна замкнутой системой интегральных уравнений Вольтерра второго рода. Доказаны теоремы глобальной однозначной разрешимости и устойчивости решения обратной задачи.
Образец цитирования: Tomaev M. R. and Totieva Zh. D.An Inverse Two-Dimensional Problem for Determining Two Unknowns in Equation of Memory Type for a Weakly Horizontally Inhomogeneous Medium // Владикавк. мат. журн. 2024. Т. 26, вып. 3. С. 112-134 (in English). DOI 10.46698/e7124-3874-1146-k
1. Lorenzi, A. and Sinestrari, E. An Inverse Problem in the Theory
of Materials with Memory I, Nonlinear
Analysis: Theory, Methods and Applications, 1988, vol. 12, no. 12,
pp. 1317-1335. DOI: 10.1016/0362-546X(88)90080-6.
2. Durdiev, D. K. The Inverse Problem for a Three-Dimensional Wave Equation in a Memory
Environmentu, Matematicheskij analiz i diskretnaya matematika,
Novosibirsk, Izd-vo Novosibirskogo Universiteta, 1989, pp. 19-27 (in Russian).
3. Grasselli, M., Kabanikhin, S. I. and Lorentsi, A. An Inverse Hyperbolic Integrodifferential Problem Arising in Geophysics. I, Siberian Mathematical Journal, 1992, vol. 33, no. 3, pp. 415-426. DOI: 10.1007/BF00970889.
4. Bukhgeym, A. L. Inverse Problems of Memory Reconstruction,
Journal of Inverse and Ill-posed Problems, 1993, vol. 1, no. 3,
pp. 193-206. DOI: 10.1515/jiip.1993.1.1.17.
5. Graselli, M. Determining the Relaxation Tensor in Linear Viscoelasticity of Integral Type, Japan Journal of Industrial and Applied Mathematics, 1994, vol. 11, pp. 131-153. DOI: 10.1007/BF03167305.
6. Cavaterra, C. and Grasselli, M. Idendifying Memory Kernels in Linear Thermoviscoelasticity of Boltzmann Type, Mathematical Models and Methods in Applied Sciences, 1994, vol. 4, no. 6, pp. 807-842. DOI: 10.1142/S0218202594000455.
7. Durdiev, D. K. A Multidimensional Inverse Problem for an Equation with Memory, Siberian
Mathematical Journal, 1994, vol. 35, pp. 514-521. DOI: 10.1007/BF02104815.
8. Bukhgeim, A. L. and Dyatlov, G. V. Inverse Problems for Equations with Memory, SIAM J. Math. Fool., 1998, vol. 1, no. 2, pp. 1-17.
9. Durdiev D. K. and Totieva Z. D. Kernel Determination Problems in Hyperbolic Integro-Differential Equations, Springer Nature Singapore Pte Ltd, Ser. Infosys Science Foundation Series in Mathematical Sciences, 2023, 368 p. DOI: 10.1007/978-981-99-2260-4.
10. Janno, J. and von Wolfersdorf, L. Inverse Problems for Identification of Memory Kernels in Viscoelasticity, Mathematical Methods in the Applied Sciences, 1997, vol. 20, no. 4, pp. 291-314.
11. Janno, J. and Von Wolfersdorf, L. An Inverse Problem for Identification of a Time- and Space-Dependent Memory Kernel in Viscoelasticity, Inverse Problems, 2001, vol. 17, no. 1, pp. 13-24. DOI: 10.1088/0266-5611/17/1/302.
12. Lorenzi, A., Messina, F. and Romanov, V. G. Recovering a Lame Kernel in a Viscoelastic System, Applicable Analysis, 2007, vol. 86, no. 11, pp. 1375-1395. DOI: 10.1080/00036810701675183.
13. Romanov, V. G. and Yamamoto, M.
Recovering a Lame Kernel in a Viscoelastic Equation by a Single Boundary Measurement, Applicable Analysis, 2010, vol. 89, no. 3, pp. 377-390. DOI: 10.1080/00036810903518975.
14. Lorenzi, A. and Romanov, V. G. Recovering two Lame Kernels in a Viscoelastic System, Inverse Problems and Imaging, 2011, vol. 5, no. 2, pp. 431-464. DOI: 10.3934/ipi.2011.5.431.
15. Romanov, V. G. A two-dimensional inverse problem for the Viscoelasticity Equation, Siberian Mathematical Journal, 2012, vol. 53, no. 6, pp. 1128-1138. DOI: 10.1134/S0037446612060171.
16. Romanov, V. G. Inverse Problems for Differential Equations with Memory, Eurasian Journal of Mathematical and Computer Applications, 2014, vol. 2, no. 4, pp. 51-80.
17. Romanov, V. G. On the Determination of the Coefficients in the Viscoelasticity Equations, Siberian Mathematical Journal, 2014, vol. 55, no. 3, pp. 503-510. DOI: 10.1134/S0037446614030124.
18. Durdiev, D. K. and Totieva, Zh. D. The Problem of Determining the One-Dimensional Kernel of the Electroviscoelasticity Equation, Siberian Mathematical Journal, 2017, vol. 58, no. 3, pp. 427-444. DOI: 10.1134/S0037446617030077.
19. Durdiev, D. K. and Rahmonov, A. A. Inverse Problem for A System of Integro-Differential Equations for SH Waves in A Visco-Elastic Porous Medium: Global Solvability, Theoretical and Mathematical Physics, 2018, vol. 195, no. 3, pp. 923-937. DOI: 10.1134/S0040577918060090.
20. Karchevsky, A. L. and Fatianov, A. G. Numerical Solution of the Inverse Problem for a System of Elasticity with the Aftereffect for a Vertically Inhomogeneous Medium, Sibirskii Zhurnal Vychislitel'noi Matematiki, 2001, vol. 4, no. 3, pp. 259-268.
21. Durdiev, U. D. Numerical Method for Determining the Dependence of the
Dielectric Permittivity on the Frequency in the Equation of Electrodynamics with
Memory, Sibirskie Elektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2020, vol. 17, pp. 179-189. DOI: 10.33048/semi.2020.17.013.
22. Bozorov, Z. R. Numerical Determining a Memory Function of a
Horizontally-Stratified Elastic Medium with Aftereffect, Eurasian Journal of Mathematical and Computer Applications, 2020, vol. 8, no. 2, pp. 4-16.
23. Davies, A. R. and Douglas, R. J. A Kernel Approach to Deconvolution of the Complex Modulus in Linear Viscoelasticity, Inverse Problems, 2020, vol. 36, 015001. DOI: 10.1088/1361-6420/ab2944.
24. Kaltenbacher, B., Khristenko, U., Nikolic, V., Rajendran, L. M. and Wohlmuth, B. Determining Kernels In Linear Viscoelasticity, Journal of Computational Physics, 2022, vol. 464, 111331. DOI: 10.1016/j.jcp.2022.111331.
25. Totieva, Zh. D. A Global Solvability of a Two-Dimensional Kernel Determination Problem for a Viscoelasticity Equation, Mathematical Methods in the Applied Sciences, 2022, vol. 45, no. 12, pp. 7555-7575. DOI: 10.1002/mma.8261.
26. Durdiev, D. K. and Bozorov, Z. R. A Problem of Determining the Kernel of Integrodifferential Wave
Equation with Weak Horizontal Properties, Dal’nevostochnyi matematicheskii zhurnal, 2013, vol. 13,
no. 2, pp. 209-221 (in Russian).
27. Blagoveshchenskii, D. A. and Fedorenko, A. S. The Inverse Problem for the Acoustic Equation in a Weakly Horizontally Inhomogeneous Medium, Journal of Mathematical Sciences, 2008, vol. 155, no. 3, pp. 379-389. DOI: 10.1007/s10958-008-9221-1.
28. Durdiev, D. K. The Inverse Problem of Determining Two Coefficients in One Integro Differential Wave Equation, Sib. zhurnal industrialnoy matematiki [Siberian Journal of Industrial Mathematics], 2009, vol. 12, no. 3, pp. 28-40 (in Russian).
30. Rakhmonov, A. A., Durdiev, U. D. and Bozorov, Z. R. Problem of Determining the Speed of Sound and the Memory of an Anisotropic Medium, Theoretical and Mathematical Physics, 2021, vol. 207, no. 1, pp. 494-513. DOI: 10.4213/tmf10035.
31. Romanov, V. G. Obratnye zadachi matematicheskoj fiziki
[Inverse Problems of Mathematical Physics], Moscow, Nauka, 1984 (in Russian).
32. Totieva, Zh. D. Determining the Kernel of the Viscoelasticity Equation in a Medium with Slightly Horizontal Homogeneity, Siberian Mathematical Journal, 2020, vol. 61, no. 2, pp. 359-378. DOI: 10.33048/smzh.2020.61.217.
33. Dobrynina, A. A. The Quality Factor of the Lithosphere and Focal
Parameters of Earthquakes of the Baikal Rift System, Ph.D. Dissertation, Novosibirsk, 2011, 17 p.
34. Voznesensky, E. A., Kushnareva, E. S. and Funikova, V. V. Nature and Patterns of Absorption
of Stress Waves in Soils, Moscow University Geology Bulletin, 2011, vol. 66, pp. 261-268. DOI: 10.3103/S0145875211040120.
35. Alekseev, A. S. and Dobrinsky, V. I. Some Questions of Practical Use of Inverse Dynamic Problems of Seismics, Mathematical Problems of Geophysics, vol. 6, part 2, Novosibirsk, 1975, pp. 7-53 (in Russian).
36. Yakhno, V. G. Obratnyye zadachi dlya differentsialnykh uravneniy uprugosti [Inverse Problems for Differential Equations of Elasticity], Novosibirsk, Nauka, 1988, 304 p. (in Russian).